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Abstract
When working towards application-tuned systems, develop-
ers often find themselves caught between the need to share
information (so that partners can make intelligent design
choices) and the need to hide information (to protect pro-
prietary methods or sensitive data). One place where this
problem comes to a head is in the release of program traces,
for example a memory address trace. A trace taken from a
production server might expose details about who the users
are or what they are doing, or it might even expose details
of the actual computation itself (e.g. through a side channel).
Engineers are often asked to make, by hand, “analogs” of
their codes that would be free from such sensitive data or,
may even try to describe behaviors at a high level with words.
Both of these approaches lead to missed opportunities, con-
fusion, and frustration. We propose a new problem for study,
trace-wringing, that seeks to remove as much information
from the trace as possible while still maintaining key charac-
teristics of the original. We formalize this problem and show
that, for a specific instance around memory traces, as little
as a few thousand bits need to be shared. We demonstrate
experimentally that the trace-wrung proxies behave simi-
larly in the context of cache simulation but with bounded
leakage, and examine the sensitivity of wrung traces to a
class of attacks on AES encryption.

CCS Concepts • Security and privacy → Information
flow control.

Keywords Privacy of traces, Synthetic trace generation,
Trace compression
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1 Introduction
A quantitative approach to optimizing computer systems
requires a good understanding of the way applications exer-
cise a machine; real program traces taken from production
code, in production environments lead to the clearest under-
standing. Unfortunately, even the simplest program traces,
such as memory access patterns, have the potential to leak
arbitrary information about the system. For example, a trace
can capture the memory access behavior of a critical cryp-
tographic function (which is known to be a function of the
secret key [40]), a set of lookups corresponding to the parsing
of a social security number, or even detailed system configu-
ration parameters that are considered a trade secret. While
the sharing of these traces between technology partners can
lead to more robust and high performance systems, it can
also leak highly sensitive information, and expose user data
to security vulnerabilities.
It has been shown [47, 51] that safe ad-hoc anonymiza-

tion is difficult to achieve. Given the cleverness of attackers
working to undowell-intentioned, but ultimately insufficient,
anonymization techniques [36], many have simply decided
to cease making traces available altogether. Today when such
traces are needed, programmers may be asked to “obfuscate”
the key algorithm behaviors to hide sensitive data or pro-
vide “models” of the system which approximate the same
behavior but omit sensitive parts. Hand-built “models” of
the system are both tedious to code and of limited predic-
tive power. Since there is no well-defined and well-trusted
approach to this problem, developers are often forced to
resort to rough human-language descriptions of the behav-
ior of programs (e.g. “it is 80% pointer-chasing”). This leads
to missed opportunities, frustrated optimization, and the
design process ultimately suffers. Ideally, engineers would
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access methods to eliminate any sensitive information from
the traces while still capturing the program behavior and
its interaction with the underlying hardware. However, the
extent to which “sensitive” data influences program behavior
is rarely understood by a single party, and even harder to
argue is that it is completely absent from a trace.

We present a new formulation of this problem where one
knows a priori exactly how much information a trace is giv-
ing away in the worst case. The basic idea is to take a trace
and squeeze it through as small a “hole” as possible to ex-
tract as much information as possible out of the trace without
completely compromising the usefulness of the trace. Like
wringing all of the water from a sponge, in the ideal case
only the structure of the trace (the dry sponge) remains and
all potentially sensitive data has been eliminated. While we
have no mechanism of quantifying the amount of sensitive
data that remains, we do have a way to say how much total
information is provided, which yields a useful upper bound.
In other words, while we cannot say for certain how much
water remains in the sponge, we know that the amount of wa-
ter has to be strictly less than the total volume we squeezed
the sponge into. We observe that when compression is taken
to this extreme and lossy form, it connects to security in
this unexpected way. However, as is often the case in com-
puter architecture, an important tradeoff remains between
information leaked and degree to which the trace accurately
captures the behavior across a suitable domain of possible
options.
We formalize this new approach specifically in the con-

text of memory address traces, as they are well studied and
we have many prior techniques to build from. To explore
the tradeoff exposed by this problem, we examine a new ap-
proach of performing guided memory trace synthesis build-
ing on ideas from signal processing. By projecting the address
space onto a wrapped 2D image, we are able to decompose
memory behavior into an orthogonal set of features that
can then be replayed to reproduce the same “visible” pat-
terns as the traces under examination. Specifically, we use a
Hough-transformed version of the trace to find both constant
and strided access patterns; Hough features are also used to
concisely summarize the trace behaviors. Our contributions:

1. We introduce tracewringing, a new paradigm of anonymity
and privacy in the context of traces where compression
and modeling provide a way to release information
with easily verifiable bounds on leakage.

2. We demonstrate a pipeline instantiating this idea in
the context of address traces and show how signal pro-
cessing techniques can be used to squeeze information
out of traces while maintaining program behavior.

3. We verify through cache-simulation results that trace-
wringing can be achieved as a proof-of-concept. While
the resulting systems may still give away thousands or

Figure 1. Forcing a trace through a channel with a capac-
ity of only a few bits bounds the amount of sensitive data
shared. While any public information such as prior non-
private traces can be used in the creation of the code, the
trace to be coded must not be known to the receiver. The
objective then is to minimize the number of bits shared while
maximizing the utility of the proxy trace. Here, we measure
the utility in terms of whether or not certain tests t1, t2,
and t3 are passed by the proxy test and/or how close to the
original tests results they get.

tens of thousands of bits, it opens the door to further
optimization and refinement.

4. We compare our approach with prior work in address
trace compression and synthetic trace generation. We
are able to construct proxy traces using as few as tens
of thousands of bits which is orders of magnitude fewer
than compressed traces and the profile used in syn-
thetic trace generation.

5. As a first evaluation of security beyond just bit leakage,
we show that a class of existing AES attacks fails to
find useful information in the traces processed in this
way, which illustrates the utility of such an approach.

The rest of the paper is laid out as follows. First, we present
the new problem of “wringing” a trace more completely.
In Section 3, we compare and contrast this problem to its
related work on prediction, compression, and other classic
trace analysis approaches. Section 4 describes our approach
of using signal processing techniques for trace wringing. In
Section 5, we describe our experimental setup, followed by
an evaluation where we compare cache-simulation results.
We summarize and conclude in Section 6.



2 Wringing a trace
A program trace can contain a tremendous amount of in-
formation about the system under evaluation. For example,
memory accesses give away the data (e.g. secret keys) used in
calculating the addresses, simultaneous accesses to different
data storage areas can give away important relationships
(e.g. between an individual’s access rights and fields of a data
structure they are accessing), and so on. But, as we know,
such traces are invaluable for performance evaluation be-
cause they demonstrate the way the system actually behaves
in the face of the workloads it must actually handle.
While the behaviors are important at a high level, rarely

are the specific elements of the trace critical. Rather it is the
relationship between those elements and the proportions
that they appear in the trace that is often the key. This is of
course not a new insight, and many people have attempted
to capture these behaviors with microbenchmarks [28] and
other trace synthesis schemes in the past [53].What we claim
as new is the idea that we can formalize these schemes in
such a way that it bounds the amount of information leaked
about a system being traced.
The argument is simple: if we only share n bits about a

specific trace then we cannot leak more than n bits about
that trace. In practice, this means that if we share only a few
tens of thousands of bits of information about the trace, then
nothing beyond those bits has been leaked. While it is not
a perfect solution (some information might be lost), it says
something useful about the maximum amount of informa-
tion that can be leaked. For example, it should be impossible
to recover an extensive list of social security numbers, sensi-
tive health information, or even an entire set of secret keys
from such a trace. To maximize security one wants to give
away as little data as possible about the trace. However, to
maximize utility the opposite is true. Here is a new question
for computer architects – how little can one give away from
the trace while still being useful?

At first one might consider this to be exactly the problem
of compression, and there definitely is a resemblance. Most
compression schemes seek to perfectly replay a given input
sequence by exploiting the fact that their inputs are far from
completely random [6]. By understanding those common
structures, for example the tendency for repeating patterns
to occur [18], a more concise representation exploiting these
structures is possible. Most modern compression algorithms
start from a relatively blank slate and train a predictor of
some form on the input as they process it. The duality be-
tween compression and prediction is pointed out by Chen et
al. [10], who note that when you predict a value with high
accuracy you can compress by storing an encoding that “the
predictor is correct n times in a row” most of the time. Lossy
compression is then a natural extension of this idea where
the predictor is “close enough n times in a row”.

However, even lossy compression schemes typically seek
to minimize the error between the original trace values and
the compressed trace values [35]. Here we have a problem
that is different in two important aspects. First, while we
want to keep the behavior of the trace to our tests the same,
we may not care that the actual addresses themselves are
similar. Second, we should be able to prime our scheme
with data from other traces that do not contain a secret
that we care about. In this way, we can think about this
problem as attempting to decompose a trace into two aspects:
a trace’s “structure”, and a trace’s “data”. The trace structure
is what defines the hierarchy of patterns inherent to the trace
that are useful for making statements about performance,
while the trace data contains the specific set of addresses
that makes the trace complete. The structure is all we really
care to transmit and, when separated from the data, may be
incredibly compact. The question then becomes, how compact
for how useful?
Answering this question requires an analysis across two

metrics: information and utility, as described in Figure 1.
Information is surprisingly easy to quantify; it is the number
of bits from the secret trace that need to be transmitted. Note
that any number of bits about other traces or training data
can be shared freely and even hard-coded into the receiver.
Our approach is to describe traces as a probabilistic grammar
of generators coupled with very high level accounting of be-
havior over time and account for bits in both the structure
and parameters of this scheme. Quantifying utility is harder
and more use-case specific. We define a distance function
between cache miss-rates of trace vectors as one such func-
tion, but understand there are many other metrics one might
use [2, 43, 53].
While this problem is generalizable, we are considering

address traces for this initial class of experiments. While
many other classes of traces might benefit, address traces are
some of the most well studied and understood, and provide
the most stable foundation for this newwork to be developed
upon and evaluated.

3 Related work
In this paper, we start with a security parameter (the number
of bits we tolerate giving away) and analyze a program’s be-
havior by studying its address trace to eliminate information
that is not essential to describe its behavior down to that
security parameter. At the heart of it, we want to accurately
characterize a program’s trace, and preserve only the bare
minimum information, so as to not leak it unintentionally.
This new problem can then leverage much of the related
problems in the fields of trace compression, statistical pro-
gram profiling, synthetic trace and benchmark generation,
and data privacy and anonymity. In the rest of this section,
we will compare and contrast our work with the large body
of work that precedes it.



3.1 Trace compression and approximation
Trace compression is well studied. TCgen [5] has a compres-
sion ratio as high as 77, 000 for certain benchmarks. Lossless
algorithms exploit sequentiality and spatiality, value pre-
diction [4, 6, 7], perform loop detection and reduction [18],
convert absolute values to offsets [27], and use clustering to
improve compression [24]. ATC [35], a compression tool for
cache-filtered addresses, is capable of both lossless (using
bytesort) and lossy compression (using sorted byte-histograms).
Compressed compact representations are used to under-

stand and predict program behavior. Larus’s work on whole
program paths [30] introduces a method to determine a pro-
gram’s dynamic control flow, using the SEQUITUR [37] com-
pression algorithm. Chilimbi presents a similar scheme to
effectively represent a program’s dynamic data reference be-
havior [11], also using SEQUITUR. Trace Approximation [22]
generates compact summaries of memory accesses of parallel
applications to achieve trace reduction.

3.2 Characterizing program behavior
Eeckhout et al., have described a method to obtain detailed
statistical profiles within program traces [17] with the com-
bination of microarchitecture-dependent and -independent
profiling tools. Their syntactically correct, and representa-
tive synthetic traces can be simulated on existing simulation
tools. Machine learning algorithms are to understand large
scale program behavior by clustering basic block vectors to
find the representative sections of a program [45].
Chen et al., have shown that hardware event profiles for

feedback-directed optimizations, can be improved by using
machine learning and statistical techniques[9]. Oskin et al.
collect statistics from actual program simulation to generate
a synthetic benchmark [39] that is faster to run. While statis-
tical methods are useful in modeling behaviors of programs,
they do not consider the amount of information they inadver-
tently leak. It is worth revisiting these works in the context
of how much total information they leak versus how useful
they are across a range of optimizations. We leave unifying
these approaches in the context of wringing as future work.

3.3 Synthetic trace generation
Synthetic trace generation has been a classic solution to
characterize performance and effectiveness of novel designs
(when workloads do not exist) [49]. To ensure that the syn-
thetic traces behave as expected, Thiebaut et al. adhere to
a hyperbolic probability law [42, 49]. Other methods on ar-
tificial workload generation have been described [19] and
reviewed [20]. PSnAP [38] separates the program structure
from the memory access pattern in two phases: capture,
when PSnAP generates a profile using PMaCInst [50], and
replay, when it produces a synthetic trace based on the cap-
tured profile.

For HPC applications, Weinberg et al. determine memory
signatures and mimic them to generate synthetic traces [54].
They maintain the cache miss rates of the applications under
test with Chameleon [53], a memory locality analysis tool
suite. The tool produces a small seed, which is replicated
to construct an arbitrarily long trace. BenchMaker [28] is a
parameterizable and scalable synthetic benchmark generator,
which can create customized workloads given some (forty)
microarchitecture-independent program characteristics.

Unlike the previously discussed papers, BenchMaker cre-
ates benchmarks which can then be run on real-hardware (or
simulators) in order to better explore the application space.
Van Ertvelde et al. go further and propose code mutation [52]
for generating benchmarks that hide functional semantics
of proprietary programs. They do this at the binary level of
chosen benchmarks rather than on traces.

3.4 Preserving data privacy
Differential privacy [16] protects anonymity by adding some
amount of carefully calibrated noise to the sensitive data sets
so as to maintain the main properties under study. Access
to the system is metered out carefully to ensure privacy is
maintained while being as true to the original distribution
as possible. It has been pointed out recently [23], that dif-
ferential privacy may introduce an unacceptable amount of
error. Being able to add noise to address traces in this fashion
may not result in similar or expected program characteristics.
Plausible deniability [3] presents a formal framework to

generate synthetic data records efficiently while guarantee-
ing privacy. Their data synthesizer is based on a probabilistic
model; it captures the joint distribution of attributes col-
lected from the real dataset. Their target applications in-
clude machine learning and dataset analyses. Other formal-
izations of privacy are an active area of exploration with k-
anonymity [48], i-diversity [33], t-closeness [31], and many
others.

Traces are inherently time-series data sets. They map less
clearly onto these models where a set of queries are often
asked and answered by someone with the full data set. Uni-
fying trace analysis and these models of privacy appears
to be an open problem and our work stands out from the
ones described here both by its intent and simplicity. We
provide an up-front security parameter, the total amount
of bits to be leaked, and we squeeze our traces to that level.
This approach provides a useful point of comparison as more
advanced techniques linked directly to more specific security
models are developed and evaluated. Drawing inspiration
from information theory, we also try to find an upper-bound
on the information leaked from the system by trying to quan-
tify the number of bits of information given away by our
method while trying to minimize it.



Figure 2. The modulo-memory access heatmap for gcc. The
heatmap is an N × M sized graph, where N is some high
power of 2 and M is the number of 10000 instruction win-
dows in the trace. These modulo-memory access heatmaps
illustrate patterns that exist within program executions, and
give us a visual sense of memory access activity. When map-
ping longer traces, for example, we see phases (as in 4), but
we also observe local patterns within these phases as shown
here.

Another related field is quantitative information flow anal-
ysis; similar to differential privacy it proposes numeric mea-
surements that pertain to privacy. Some examples of its appli-
cations are in producing better bug reports which maintain
user privacy [8] and measuring source-location information
leakage in wireless sensor networks [32] among many oth-
ers. McCamant et al., present a method to determine how
much information real programs leak [34] using a practical
implementation of quantitative information flow which uses
dynamic analysis.

4 A signal processing approach to
wringing

Traces expose the inner workings of a program, its inter-
action with the runtime, and the underlying hardware ar-
chitecture. As such, even the simplest memory traces prove
to be a complex concoction of patterns generated by these
underlying factors. For example, in a memory address trace,
accesses to many different types of objects across both stack
and heap are all interleaved to create the whole. Our goal
of capturing the structure of these traces first requires that
we identify, describe, and quantify the patterns that we care
most about. While understanding the underlying cause of
these patterns requires detailed knowledge of the program,
quantifying the magnitude of these patterns can be done
on the traces alone. In fact, it is observed that even compli-
cated programs exhibit memory access patterns that can be
decomposed into simpler ones.
To get a visual sense for the structure of such traces, we

project the address trace onto a fixed-size modulo-mapping

of the memory space. This heatmap is a graphical repre-
sentation of the memory access behavior over time. Figure
2 shows such a heatmap for gcc where instruction count
(time) runs along the x-axis and the address runs along the
y-axis. If we were to plot this for the entire memory it would
clearly be too large for such a graph (the distance between
the stack and heap would dwarf any local behavior), so we
instead plot the address modulo a large power of two. We
call that the “wrapped address”. This plot of the wrapped
address over time (in terms of instructions) has the advan-
tage of mapping addresses onto a more manageable space,
but at the same time keeps the spatial-temporal structures
that would actually impact a real cache. The darkness of each
pixel is a function of the total number of memory accesses
that happen to that wrapped address during a window of
instructions.
Interesting and intuitive patterns emerge after looking

over this graph. The flat horizontal lines in the graph are
patterns of repeating access to a set of addresses. These are
high temporal locality behaviors. Sharp diagonal lines, on the
other hand, are regions of high spatial locality as addresses
are accessed one after the other in succession. If we can
concisely capture the character of these behaviors, without
transmitting the addresses themselves, we can minimize
the amount of information leaked. Describing an efficient
method for extracting these patterns is exactly the goal of
this section.
Figure 3 gives a high-level overview of the pipeline we

propose to first wring and then expand a trace. There are two
essential subsystems in our pipeline; one for extracting struc-
tural information about the trace from our heatmaps, i.e., for
trace-wringing, and the other for rebuilding a proxy trace
with the same structural information. At one end, as seen in
Figure 1, with the help of some prior reference knowledge
about traces, a full trace is decomposed into its describing
parameters. These parameters are the ones being communi-
cated via a constrained channel to the generator subsystem,
which then uses the same prior reference knowledge and
the descriptive parameters to generate a proxy trace. In our
pipeline, prior reference is used for optimization of encoding
(generation of heatmaps, detection of phases and line seg-
ments within them, and creation of “information packets”),
decoding (proxy trace generation from shared “information
packets”), and the selection of Hough parameters. The gener-
ated proxy trace’s utility is measured by testing its properties
against that of the original full trace.

The modulo-memory heatmaps exhibit hierarchical orga-
nization. Globally, there exists a recurrence of similar pat-
terns in the order of a few tens of thousand instructions,
i.e., the presence of program phases, and within them, we
observe patterns that we associate with the more local mem-
ory access activity. In order to find some representative of
the higher echelons of this hierarchy, we employ k-means
clustering to detect the program phases [45].



Figure 3. Pipeline for our signal processing approach to trace-wringing for proxy trace generation. The problem of sharing
information can be described with two subsystems; at the trace-wringing end, we find parameters that will accurately generate
the trace at the generator subsystem end. The goal is to minimize the size of the packets being sent between the two subsystems,
while still maintaining integrity of the data transmitted.

4.1 Phase detection
While Figure 2 is not the full execution of gcc, we note the
presence of a set of program phases. The first observation
we make is that if we wish to capture the character of these
traces, we need to extract higher level shifts in behavior over
time. If one can group together alike behaviors (for example,
the middle and end of Figure 2) we can then select only a
single representative for each such behavior. Fortunately this
is almost exactly the problem of phase detection [14, 44, 46].
To find the phases, and select a representative, we pose this
as a clustering problem (similar to prior work). We break the
execution up into a set of “chunks” by instructions executed.
The columns of the chunks are then summed together to
form a vector. Each vector thus has a length equal to the
numberN of wrapped line addresses. We can think of each of
these vectors then as a point in N dimensional space. Finding
groups of similar points (our memory vectors) is then exactly
the clustering problem. Here we can simply apply the k-
means algorithm [25] with k equal to the number of phases
we wish to represent in the trace. The k-means algorithm
represents clusters by a set of k cluster centroids which it
then iteratively optimizes. Each iteration alternates between
assigning each point in the space to exactly one centroid,
and updates centroid position to be in the “middle” of the
new set. After k-means, we take each cluster and select one
that is the longest to be the representative cluster.
Figure 4 shows the result of running the phase detector

on the memory address trace for gcc. Each of the 3 colors
labels the trace above it with a unique phase identifier. The
technique does a good job of lining up with the repeating
structures.

Now, with these phases marked, rather than encoding the
full trace monolithically, we can encode just the k represen-
tative clusters independently with loд2k bits. The list of the
phase identifiers can then become part of the information

shared. As can be seen in Figure 4, there is a great deal of tem-
poral locality in the phases and can be trivially compressed
by another order of magnitude with run-length encoding.
Given that we now have a set of representative chunks

of execution, we need to efficiently summarize the features
that exist within each chunk. If we look back to Figure 2, we
can see that many of the patterns in the heatmap can, in fact,
be reduced mostly to a set of lines.

4.2 Decomposing with Hough transforms
Concisely summarizing all of the complex patterns of the
trace all at once can be overwhelming. However, if we can
break the pattern down into a set of simpler behaviors, we
can then tackle them one by one. Given that both strong
temporal and spatial locality features show up as lines, de-
composition into a set of line segments is a natural place to
start. However, decomposing the address trace features in
the space ofwrapped_addresses×instruction_count directly
is not easy. Luckily, we can draw upon established methods
in image processing to transform our heatmaps into a space
where such extractions are achievable.

The Hough transform [15] is a popular computer vision
procedure used to detect patterns in images. The technique is
used to find the locations and orientations of certain geomet-
ric primitives in the given space. Hough transforms, being
resilient to noisy images, makes for an ideal feature extrac-
tion candidate for our problem. Geometric primitives such
as lines, ellipses, and circles are supported by Hough trans-
forms, but we find use only for the simplest Hough transform:
the Hough-line Transform.
While standard regression methods are useful fitting a

slope-intercept form of y =mx +b to a set of points, finding
sets of rotated lines from an image is hard in the Cartesian
coordinate system. The Hough-line transform employs the
polar coordinate form and describes lines by their distance
from the origin r and the angle formed between the origin
and the closest point on the line θ : r = x cosθ + y sinθ .



Figure 4. Phases visible in the trace generated by gcc after k-means clustering. Each of the 3 colors in the bottom marks a
unique phase in the trace. Note, importantly, that phases reoccur over time.

Figure 5. We capture information about lines we observe
in trace heatmaps using the Hough Transform. Here, we
demonstrate its working. The points on the test image are
surveyed for parameters in the polar coordinate space de-
scribed as the Hough Transform. The intersections describe
the parameters of the detected lines. The final figure shows
the Probabilistic Hough Lines, the more robust and efficient
algorithm. For our heatmaps, we use the Probabilistic Hough
Line algorithm.

Now, we have two separate coordinate systems in which
we can find the best fit line; the image space, and the <r ,θ>
parameter space. For every point in the image space, the
Hough transform considers every possible rotation of lines
passing through that point. Iterating through the different
possible values of r and θ in the Hough space, the algorithm
forms a sinusoidal curve for each point in the image space.
Each point in the <r ,θ> space corresponds back to one pos-
sible straight line in the image space. This point-to-curve

transformation (where every point in the image space is a
curve in <r ,θ> space) is the Hough-line transform. We do
this for all the points, and the most coincident points (where
the most sine curves intersect) in the <r ,θ> space is the
choice of parameters for a line in the image space. Specifi-
cally, what makes the Hough transform robust is how the
parameter space is set up: it is divided into a mesh of finite in-
tervals or accumulator cells. As the algorithm proceeds from
point-to-point in the (x ,y) (image) space, the accumulators
in the discretized <r ,θ> space are incremented.
For our instance, we use the progressive probabilistic

Hough transform [21], a rendition of the Hough transform
algorithm that only performs voting on a subset of the in-
put points. These input points are chosen based on certain
features of the expected result, such as a threshold of “dark-
ness”, the length of the expected line, interpolation strategies,
and the angle of the line. By interleaving the voting process
with line detection, this algorithm finds the most prevalent
features first, while also minimizing the computational load.
The progressive probabilistic Hough transform returns a

set of lines, with each line’s (x ,y) coordinates in the modulo-
memory heatmap space.We also introduce a variable, “weight”,
for each line, which is a measure of darkness of the line.
The list of phase identifiers (the result of clustering), the

two (x ,y) coordinates of each line detected by the Hough
transformation, and the line’s weight per representative
phase, give us the amount of share-able information.

4.3 Proxy trace generation
Using phase detection and Hough-line transformation, we
end up with a set of Hough lines for each representative
phase. Each phase is also assigned a label indicating to which
cluster it belongs to, i.e., which representative phase “repre-
sents” it. Since the structural information of each phase is
encoded in the the Hough lines, we can generate an “address
tracelet” for each phase using the representative’s Hough
lines.
Phases from the same cluster may occur intermittently

and in different lengths. For all phases in the same cluster,



we generate patterns continuously in a rotating fashion re-
gardless of the length. For example, if phases x1 and x2 are
both represented by representative phase r1 (suppose x1 oc-
curs before x2 and there’s no other phases represented by r1
in between), we then generate a trace for x2 following the
partial patterns we generate for x1 and wrap over if the total
length grows beyond r1, i.e., the starting time step t when
generating addresses for x2 will follow the end time step t −1
when we generate for x1 and wraps over when t becomes
larger than the end time stamp in r1.

Within each phase, we generate addresses by alternatively
picking addresses from the subset of lines that cover each
point in time (each time step t in the projected address space
corresponds to N addresses, in which N is determined by the
window size when the heatmap is generated at first place).
If there are no lines covering the current time step t , we
generate addresses for t from a uniformly distributed noise
function as there is no clear pattern observed by the Hough
transformation and we mimic a random access behavior in
this way.
Upon picking a Hough line at time t , we generate an ad-

dress “segment” from that line based on a fixed segment
length, which captures locality at a small granularity. The
segment length for each workload is hand-picked so that it
best captures characteristics of the trace. Each address gen-
erated from the line is also shifted to the left by the cache
block offset bits (6 bits for a typical 64B line size) since the
purpose of wringing is to preserve the cache-level patterns.
After generating address tracelets for all the phases, we

concatenate them together in the original order of the phase
occurrences to form a complete proxy address trace. The
proxy trace has the same length as the original trace but its
memory footprint is limited to the wrapped address space.

5 Evaluation
To evaluate the effectiveness of the approach, we take a
set of traces, wring them through our pipeline to a target
number of bits, and evaluate the traces across a range of
cache configurations with regards to miss rate. The details
of the parameters and process follow below.
Starting with the full traces, we first convert them into

heatmaps which are parameterized by the number of instruc-
tions from the trace to simulate, the window size, and the
total size of the mapped space. If a map space is chosen to
be too large, the line detection techniques will fail to pick
up useful edges as there is too much white space for them
to operate properly. If the map space is too small then the
addresses will be truncated to such a degree that they will
cease to be useful for evaluating miss rate. For our experi-
ments, the x axis in the modulo-memory heatmap represents
10,000 instructions.

We use signal processing techniques here to collect im-
portant information about the heatmaps. We compute the

Figure 6. Producing probabilistic Hough lines on top of the
heatmap of the SPEC2006 benchmark, gcc. The colors are
used to indicate distinct lines produced by the decomposi-
tion.

Hough transforms, as described prior, to give us the value
of the constants that describe the lines that the algorithm is
able to “see” in the heatmaps. Specifically wemust hand-tune
the progressive probabilistic Hough transform input points
(to reduce the search space of the algorithm) to find the lines
in the midst of all the noise that these heatmaps inherently
have. For our experiments, the parameter threshold ranged
from [20,200], line_lenдth ranged between [10,60], line_дap
ranged between [1,50], and theta ranged between π and
π/2. Specifically, the probabilistic Hough lines [41] are then
generated and remapped back into the address space.

5.1 Measuring bits
While our main goal so far has been to extract and describe
the structure of traces as correctly as possible, we must also
maintain that not too much information is given away. The
information that needs to be transmitted to the trace gener-
ator must contain both the global phase-identifier informa-
tion, and the line coordinates and weights per representative
phase.

Phase_bits = ⌈loд2(#_phases) ∗ len(phase_seq)⌉ (1)

To calculate the bits that are needed to produce the proxy
trace for each workload, we dump all the labels from the
clustering result as well as all the Hough lines detected,
each of which is a 5 tuple of coordinates in the heatmap



space and a weight value. The phase information can be
represented using Phase_bits (Eq. 1). We then apply a variety
of compression techniques to compress the dumped files
and estimate the bits of information by measuring the size
of the compressed file. We push all of the information that
is to be measured into a single file to ensure that no side
information is accidentally shared between the two halves
of the system. We discuss the breakdown effects of each
compression technique in Section 5.4.

5.2 Trace selection
Rather than working on the traces in their entirety, for each
workload, we evaluate from a large SimPoint [45] trace of
the most representative region of 100M instructions, which
results in a variable length of address traces from 30M to
70M accesses for different workloads. We use benchmark
subsetting suggestions [29] to reduce the space of evaluation
to a more manageable level, although our results are limited
to 6 of the 9 suggested due to errors getting the benchmarks
running. Results from all benchmarks run are considered and
the optimal (in terms of bits leaked and accuracy of miss rate)
points at two different levels of bit transmission budget are
shown in Table 1. The time overhead for our pipeline is also
presented in Table 1. Although it varies between different
workloads, we expect this overhead to grow sub-linearly as
the trace becomes longer for any single workload. The time
overhead is linearly correlated with the number of distinctive
phases in the trace and the number of phases tends to grow
very slowly since phases often repeat themselves.

5.3 Measuring utility
As we concentrate on cache behavior as a target for initial
evaluation we use cache miss rates pre-wringing and post-
wringing to evaluate how useful the resulting trace is. The
collected address traces are simulated with different cache
configurations using DineroIV [26]. We use 6 cache con-
figurations in our experiments: direct-mapped and 4-way
associative combined with 3 different cache sizes (8k, 16k
and 32k), and measure their miss rates.
From Table 1, we observe that as the bits of information

leakage increase, the miss rate gets closer to the ground truth
miss rate, which confirms that, with more information going
through the wringing “hole”, the proxy trace we reconstruct
becomes more similar to the original trace in terms of struc-
ture. Some benchmarks such as sjenд and hmmer do not
benefit much from the extra bits, in terms of closeness to the
miss rate, as 10, 000 or even fewer bits are enough to accu-
rately capture their cache behavior, while others including
libquantum perform much better due to the fact that they
have a more complex structure which requires more bits to
encode.
Figure 7 compares the proxy heatmap generated for gcc

against the original. Our wrapped address space is of height
2048 (lines in the heatmap) and each “column” in the heatmap

corresponds to 10,000 memory accesses. The figure illus-
trates that our approach is able to capture all but the subtlest
patterns.

5.4 Comparison to existing compression and trace
generation techniques

We are not aware of any prior methods that have attempted
to bound the information leakage from generated traces.
While our approach to bounding draws from trace compres-
sion and synthetic trace generation techniques, we stand out
in at least the following ways: (a) we seek similar behavior
in our generated traces, rather than similar addresses, (b)
we allow unbounded priors from non-sensitive traces, (c)
our traces are lossy specifically in a way that it maintains
architectural utility, and (d) qualitatively, the target size of
the final “compressed” trace is far smaller than normally
considered. This last point, (d), is something that we can
quantify experimentally.
Specifically, we compare our method against a state-of-

the-art lossy compression and synthetic trace generation in
Figure 8. “ATC” is an open-source implementation of the
address trace compression framework [35], which supports
lossy compression over cache traces. We run both off-the-
shelf ATC, and a hand-tuned version that attempts to fur-
ther minimize the trace size while still decompressing into
useful traces. Although off-the-shelf ATC achieves good ac-
curacy, it requires up to tens of millions of bits to represent
the structure and data of the original trace in most cases.
Even the hand-tuned version, which adjusts the similarity
threshold and reduces the size of the unit of comparison,
does not change the result significantly. This is orders of
magnitude more than the number of bits transmitted in
our trace-wringing framework (note the base 10 log scale).
For synthetic trace generation, we use an open-source im-
plementation of the Chameleon framework [54]. The pro-
files/characterization of traces are quite large even after h5
compression due to the fact that a histogram of address reuse
is entirely captured in order to generate a similar-behaving
synthetic trace. “FP+RLE+BZ2”, our most aggressive post-
wringing compression technique, significantly reduces the
number of bits while maintaining good accuracy. This is
not to say that these and related approaches could never be
improved to be competitive on this new problem, but both
out of the box and with some careful tuning, they do not
appear to be currently.

5.5 Case study: AES attack
While it is impossible to say with certainty what could be
leaked in the resulting bits, it is worthwhile to examine
the technique practically in the context of a known attack.
Specifically, we choose to examine the trace to see if it is
possible to recover an AES key using known attacks. AES
attacks based on cache sets have been well-studied [40]; we
follow a similar process here.



Figure 7. Heatmap for the original gcc trace and the trace-wrung proxy generated for gcc trace from the wrapped address
space. Each pixel corresponds to one wrapped address at one time step. The darker the pixel, the more times that address is
accessed during that time step.

The vulnerable portion of an AES trace lies in the accesses
to the Rijndael substitution function (sbox). This is stored
as a table in memory. In the first round of encryption, the
offset into the table is the result of each byte of the key xor’d
with each byte of the plaintext. When the attacker chooses
or knows the plaintext, the offsets are of obvious impor-
tance — the ability to discover the table offsets directly leads
to discovery of the secret key. Because the post-wringing
trace consists of cache set indices, we limit the attack on the
original trace to cache sets only as well for a fair comparison.
The attack model is as follows. Assume the attacker has

chosen a uniformly random plaintext, and made N calls to
an AES encryption, where each call has 16 bytes of the plain-
text. The attacker can observe the resulting traces, either
pre- or post-wringing. The attacker prepares a table of 256
“candidate” values for each byte of the key. Then, for each key
byte, the attacker considers every address in the traces that
could potentially fall within the sbox table. Each of these
addresses corresponds to an sbox table offset, and, when
xor’d with the appropriate plaintext byte, yield a candidate
key byte. The corresponding entry of the candidate table is
incremented by one. When finished, the key byte with the
highest candidate score is used in the key guess.

The vast majority of addresses processed will not be sbox
accesses; however, because the plaintext is chosen to be
random, these will become uniform random noise. Only the
first-round sbox accesses always come out to the same value
when xor’d with the random plaintext: the correct key byte.
With enough traces, the signal corresponding to the correct
key will rise above the noise and be readily apparent. In our

attack, looking at full addresses, it took only 13 encryptions
to get all bits of the correct 16-byte key.

Since the post-wringing trace is a smaller space of bits, we
are unable to attack full addresses. Instead, we attack the bits
provided; this makes the attack very similar to the original
cache attack [40]. Attacking the first round of AES cannot
yield all the bits of each byte of the key, since the offset
within a given cache set is unknown. Attacking subsequent
rounds of AES can provide the rest of the bits, but requires
that the first round attack is successful. Therefore, showing
that the attacker is unable to succeed in attacking the first
round is sufficient to demonstrate that the attack fails.
We perform this attack on a set of traces collected from

runs of Tiny AES [1] with a random plaintext. We perform
the same attack pre- and post-wringing. In the pre-wringing
trace, we use only 12 bits of the address (the amount of
information contained in the post-wringing trace), masking
the lower three bits and the upper bits of the address.We note
that this trace was wrung with 8-byte cache lines specifically
to give advantage to the attacker and show the usefulness of
the approach; increasing the cache line size only makes the
attack more difficult. Pre-wringing, the attacker correctly
guesses the upper five bits of all 16 key-bytes after 1,838
encryptions. This is the maximal information that can be
learned in a first-round attack with 8-byte cache lines. Post-
wringing, the attack guesses wrong for all 16 bytes of the
key after 50,000 traces.

We performed an entropy calculation on the original traces
based on the distribution of addresses at each time step across
a number of traces. We see that ∼160 addresses have more



Table 1. Best miss rates observed for the benchmarks with three different bit-budgets of information leakage and time overhead
for trace-wringing followed by proxy trace generation. For each cache configuration 4 miss rates are reported. We report:
ground truth miss rate from the original trace, best miss rate using all hough lines, best miss-rate with 100k bits, and best
miss-rate with merely 10k bits. “-” means the most aggressive setting in our experiments requires more bits to construct the
proxy traces.

Benchmark Bit Budget Cache Configs. Time
8k,dm 8k,4w 16k,dm 16k,4w 32k,dm 32k,4w Wringing Decompression

дcc

Orig. 6.88% 3.91% 4.86% 2.79% 3.36% 2.11%

138.55s 123.37sFull 6.10% 3.98% 3.60% 1.27% 1.93% 0.48%
100k 4.82% 2.94% 2.81% 0.72% 1.40% 0.25%
10k - - - - - -

sjenд

Orig. 12.3% 5.01% 6.45% 2.19% 4.24% 0.64%

94.42s 128.08sFull 12.85% 10.16% 8.22% 3.74% 4.26% 0.64%
100k 12.85% 10.16% 8.22% 3.74% 4.26% 0.64%
10k 11.89% 7.78% 1.13% 4.39% 0.25% 2.25%

cactusADM

Orig. 8.29% 7.03% 5.44% 5.29% 2.09% 1.54%

209.94s 918.04sFull 9.35% 4.98% 5.21% 0.85% 2.08% 0.29%
100k 3.73% 0.49% 2.02% 0.14% 0.55% 0.12%
10k - - - - - -

milc

Orig. 7.99% 7.09% 7.68% 7.03% 7.35% 6.94%

336.41s 31.36sFull 7.73% 7.19% 7.11% 6.66% 5.93% 5.69%
100k 7.51% 7.25% 6.75% 6.44% 5.46% 5.44%
10k - - - - - -

hmmer

Orig. 27.8% 2.54% 26.8% 1.20% 17.0% 0.78%

151.79s 287.95sFull 23.6% 7.21% 20.53% 5.05% 10.31% 4.32%
100k 23.6% 7.21% 20.53% 5.05% 10.31% 4.32%
10k 23.6% 7.21% 20.53% 5.05% 10.31% 4.32%

libquantum

Orig. 16.3% 16.2% 16.2% 16.2% 16.2% 16.2%

57.73s 21.89sFull 17.31% 17.27% 14.99% 14.90% 12.10% 11.90%
100k 17.31% 17.27% 14.99% 14.90% 12.10% 11.90%
10k 74.46% 74.44% 69.33% 69.31% 59.31% 59.32%

than 5x the information content of the remaining addresses.
These higher information-content addresses correspond to
the sbox computations. Post wringing, all addresses have
uniform information content, i.e., there is no set of addresses
that is more influenced by the key than others.
Our wringing process was able to produce a new trace

with comparable cache miss rates. We received 0.0% (new
trace) against 0.9% (original trace) for the direct mapped
cache and 0% (both new trace and original trace) on the 4-
way associative caches while completely stopping our AES
cache attack.

6 Conclusion
The conflict between the need to share information (to pro-
vide more optimal performance) and hide information (for
privacy) is becoming increasingly fundamental in the com-
puter system fields. While addresses are one such type of

trace, one can certainly understand how related problems
exist with storage traces, cache coherence traffic, energy us-
age, user interaction data, and certainly location data. Clever,
yet complex, techniques have been developed to address cer-
tain anonymity problems in the past, yet the reality is that
they are often dependent on specific assumptions such as a
lack of prior information, statistical distributions governing
the data, or that number of queries can be tightly bounded.
While our wringing approach is very direct, that directness
also comes with clarity as to what it does and does not do. It
does not guarantee anything about how useful the resulting
trace will really be for optimization. However, it does trans-
form the problem of safe sharing into a measurable systems
problem subject to the myriad tools we have at disposal for
common-case optimization. Furthermore, it does provide a
strong and clear bound on the amount of useful information
given by the trace.



Figure 8. Breakdown of trace-wringing pipelines and com-
parison against state-of-the-art compression and synthetic
trace generation techniques in the bit-error space. The x-
axis represents number of bits transmitted, y-axis represents
the geometric-mean of error in miss rate. Per workload, we
mark the bit-error points for different techniques; being in
the lower-left is better. A packet contains information about
hough lines and labels. “FP” is fixed-point quantization on
hough lines, “RLE” is run-length encoding on labels, “H5”
is the HDF5 format compressed using h5py [12] for hough
lines. We use a general purpose compressor on our packets,
either Gzip,“GZ”, or Bzip2, “BZ2”. “GZ/ALL” and “GZ/HALF”
indicate Gzip on unquantized packets of either all or highly-
weighted half of the hough lines. “ATC” is the off-the-shelf
lossy compression [35], “ATC_TUNED” is hand-tuned to
minimize information transferred. “CHAMELEON’ is from
the open source implementation of Chameleon [53]

The technique we present here is a proof-of-concept and
we make no claims that it captures anywhere near the true
minimum leakage to utility tradeoff. There is much work left
to be done to bring the number of bits shared compared to the
accuracy lost down into a more appealing tradeoff. 10, 000
bits, let alone 100, 000 bits, is still a tremendous amount of
information to leak and it is far from certain that it can never
be used for anything malicious. From a security standpoint,
we must do far better than that. Despite this gap, we feel
that even these results are better than the other approaches,
which fall to the extreme of either leaking almost no informa-
tion with limited connection to reality or direct connection
to observed behavior and completely unbounded informa-
tion sharing. We establish this experimentally in Section 5
by comparing against existing approaches, which while de-
signed for different purposes, do functionally provide a bit-
reduced trace with diminished fidelity. The specific set of
techniques we propose push the traces to much lower levels
of leakage than these other past works can achieve with only

slight losses in accuracy. This is perhaps not surprising as
the levels of “compression” one needs to achieve to store a
trace efficiently on disk are far less than that needed to have
confidence there is little sensitive information retained.

Looking forward, with this new approach we can build on
years of community experience dealing with address traces
and encode common patterns in a general way. In many
important applications, striding memory behavior is an im-
portant component and we believe we are the first to connect
the address trace analysis problem with the Hough trans-
form. The resulting analysis is surprisingly robust to noise
and can capture general striding behavior. While this ap-
proach is effective for the memory problems we examined,
there is no shortage of opportunity to build on the tech-
niques we lay out to create more robust and higher quality
trace wringing systems. Fully leveraging the best synthetic
trace, trace compression, and statistical modeling techniques
and understanding what they each bring to the problem is
one next step. Bringing the full algorithmic power provided
by the fact that any public trace data can be leveraged in
the compression is also very promising. This opportunity
is particular interesting as it sits outside of any past lossy
compression or synthetic trace scheme’s ability to exploit
(i.e. minimizing total data transferred is different than mini-
mizing sensitive data transferred). Further forward, we see
a set of access behaviors (uniform random, stride, etc) that
might form a set of “basis functions” which then are com-
posed to describe a set of traces. Finding the best set of basis
functions and how to optimally compose them to form good
proxy traces can lead to many interesting follow-on works. It
remains to be seen just how small of a footprint is achievable,
but we believe there are orders of magnitude of improve-
ment left to be had. Luckily, because the data to train such
a wringing approach is generated completely by machine,
this is an area where there is a great opportunity to gather a
great deal of data to inform our models. The exploration of
the hyper-parameter space of the wringing process can be
automated using existing frameworks (e.g., [13]). In the end,
this paper is a stepping stone to more general methods for
trace sharing and we hope the clear metrics for success (e.g.
share as few bits as possible) prompts further discussion and
effort by the community.
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Abstract—As computer architecture continues to expand be-
yond software-agnostic microarchitecture to data center organi-
zation, reconfigurable logic, heterogeneous systems, application-
specific logic, and even radically different technologies such
as quantum computing, detailed cycle-level simulation is no
longer presupposed. Exploring designs under such complex
interacting relationships (e.g., performance, energy, thermal, cost,
voltage, frequency, cooling energy, leakage, etc.) calls for a
more integrative but higher-level approach. We propose Charm,
a domain specific language supporting Closed-form High-level
ARchitecture Modeling. Charm enables mathematical represen-
tations of mutually dependent architectural relationships to be
specified, composed, checked, evaluated and reused. The language
is interpreted through a combination of symbolic evaluation (e.g.,
restructuring) and compiler techniques (e.g., memoization and
invariant hoisting), generating executable evaluation functions
and optimized analysis procedures. Further supporting reuse,
a type system constrains architectural quantities and ensures
models operate only in a validated domain. Through two case
studies, we demonstrate that Charm allows one to define high-
level architecture models concisely, maximize reusability, capture
unreasonable assumptions and inputs, and significantly speedup
design space exploration.

Keywords-abstraction; modeling; DSL;

I. Introduction

Computer architecture is evolving into a field asked to cover
a tremendous space of designs. From the smallest embedded
system to the largest warehouse-scale computing infrastruc-
ture, from the most well-characterized CMOS technology node
to novel devices at the edge of our understanding, computer ar-
chitects are expected to be able to speak to the non-orthogonal
concerns of energy, cost, leakage, cooling, complexity, area,
power, yield, and of course performance of a set of designs.
Even radical approaches such as DNA-based computing [1]
and quantum architectures [2], [3] are to be considered. While
there are a great deal of well considered infrastructures to build
around when detailed cycle-level simulation is required, for
engineering questions that span multiple interacting constraints
or to extreme scales the best approaches are more ad-hoc.

Careful application of detailed simulation can accurately
estimate the potential of a specific microarchitecture, but
exploration across higher level questions always involves some

analytic models. For example, “given some target cooling
budget, how much more performance can I get out of an
ASIC versus an FGPA for this application given my ASIC
will be 2 tech nodes behind the FPGA?” The explosion of
domain-targeted computing solutions means that more and
more people are being asked to answer these questions ac-
curately and with some understanding of the confidence in
those answers. While any Ph.D. in Computer Architecture
should be able to answer this question, when you break it
down, it requires a combination of a surprisingly complex set
of assumptions. How do tech node and performance relate?
What is the relationship between energy use and performance?
ASIC and FPGA performance? Dynamic and leakage power?
Temperature and leakage? Any result computed from these
relationships will rely on the specific relationships chosen, on
those relationships being accurate in the range of evaluation,
on a sufficient number of assumptions being made to produce
an answer (either implicitly or explicitly), and finally on that
the end result be executable to the degree necessary to explore
a set of options (such as for a varying parameter e.g., total
cooling budget).

Such analysis today is not supported in any structured form.
Typically it exists as a set of equations in an Excel spreadsheet
or perhaps as a set of handwritten functions in a scripting
language. Unfortunately, this comes with some issues. As sim-
ple as sets of mathematical relationships between quantities,
the lack of a common engineering basis for these models
have kept them from being swiftly and correctly constructed,
understood and applied in guiding new system designs. Some
models share a set of common relationships but they redefine
those symbols and equations often with subtle differences that
can be misleading if one is not careful. Some have implicit
constraints on one or more architectural quantities which may
lead to pitfalls if overlooked. Finally, one has to manually
convert these mathematical equations to executable functions
in order to evaluate the model and perform the design space
exploration, which can be error-prone and inefficient.

To address these issues we design and explore a declarative
domain specific language, Charm, to serve as a unified basis
for the representation, execution, and optimization of closed-



form high-level architecture models. Charm provides a concise
and natural abstraction to express architectural relationships
and declare analysis goals. By combining symbolic manip-
ulation, constraint solving, and compiler techniques, Charm
bridges the gap between mathematical equations and exe-
cutable, optimized evaluation functions and analysis proce-
dures. The benefit of building and evaluating closed-form high-
level architecture models using Charm is threefold:

Abstraction – Charm encapsulates a set of mutually depen-
dent relationships and supports flexible function generation.
It enables representation of architecture models in a math-
ematically consistent way. Depending on which metric the
model is trying to evaluate, Charm can generate corresponding
functions without requiring the user to re-write the equations.
It also modulates high-level architecture models by packing
commonly used equations, constraints and assumptions in
modules. These architectural “rules of thumb” can then be eas-
ily composed, reused and extended in a variety of modelling
scenarios.

Type Checking – Charm enables new static and run-time
checking capabilities on high-level architecture models by
enforcing a type system in such models. One example is
that many architecturally meaningful variables have inherent
physical bounds that they must satisfy; otherwise, although
mathematically viable, the solution is not reasonable from
an architectural point of view. With the type system built-
in, Charm can dynamically check if all variables are within
defined bounds to ensure a meaningful modelling result. The
type system also helps prune the design space based on
constraints, without which a declarative analysis might end up
wasting a huge amount of computing effort in less meaningful
sub-spaces.

Optimization – Charm opens up new opportunities for
compiler-level optimization when evaluating architecture mod-
els. Although high-level architecture models are usually sev-
eral orders of magnitude faster than detailed simulations, as the
model gets complicated or is applied many times to estimate
a distribution, it can still take a non-trivial amount of time
to naively evaluate the set of equations every iteration. By
expressing these complicated models in Charm, we are able
to identify common intermediate results to hoist outside of
the main design option iteration and/or apply memoization on
functions.

Finally, and perhaps most importantly to the community, it
promotes collaboration between application designers, com-
puter architects, and hardware engineers because they can
share and refine models using the same formal specification
and a common set of abstractions.

We release Charm as an open-source tool on github1

and we provide a wide collection of established architecture
models for quick use/reference, including: the dark silicon
model [4], a resource overhead model for implementing magic
state distillation on surface code [5]–[7], mechanistic cpu

1https://github.com/UCSBarchlab/Charm.git

models [8], [9], a TCAM power model [10], the LogCA
model for accelerators [11], the adder/multiplier models from
PyRTL [12], a widely-used CNN model [13], dynamic power
and area models for NoC [14], specifications of Xilinx 7-series
FPGA [15] and the extended Hill-Marty model [16].

To describe Charm we begin in Section II with a motivating
example high-level model to show the problems with ad-hoc
modelling in practice. Then we introduce the design of Charm
in Section III followed by two case studies demonstrating
the application and benefits of building closed-form high-
level architectural models with Charm in Section IV. Finally
we discuss the related works in Section V and conclude in
Section VI.

II. Charm by Example

To understand Charm it is useful to have a running example.
In this section, we present an implementation of the model and
analysis from a well-cited study of dark silicon scaling [4].
After a brief review of the models, we show the complete
code in Charm performing the same analysis of symmetric
topology with ITRS technology scaling predictions. As we
extend this model to cover more analysis provided in [4], it
leads to a discussion of the potential issues with less structured
approaches and highlights some of the features of the language
that help architects avoid these pitfalls.

A. A Brief Review of the Dark Silicon Model

To forecast the degree to which dark silicon will become
prevelent on CMPs under process scaling, Esmaeilzadeh et
al. first construct three models: a device model (DevM), a
core model (CorM) and a CMP model (CmpM). DevM is
the technology scaling model relating tech node to frequency
scaling factor and power scaling factor. It is a composite
model combining a scaling prediction with a simple dynamic
power model (P = αCV2

dd f ). CorM is the model relating
core performance, core power, and core area. It is empirically
deduced by fitting real processor data points. CmpM has two
flavors which are essentially very different models: CmpMU

and CmpMR. CmpMU is an extension of the Hill-Marty CMP
model [17] and CmpMR is a mechanistic model [18].

A composition of the three models is then used to drive
the design space exploration. The authors combine DevM and
CorM to look at CorM for different tech node and combine
DevM, CorM, and CmpM to iterate over a collections of
topologies, scaling predictions and core configurations. They
then plot the scaling curves for the dynamic topology/CmpMR

with both ITRS and a conservative scaling [19].

B. A Complete Charm Code Example

Listing 1 gives the complete code in Charm DSL to run
the design space exploration with ITRS predictions on the
symmetric topology (we later extend the analysis to other
topologies and predictions in Section IV-A). At a high level,
we can see that the code is split into three major components:
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Fig. 1. Upper-bound ITRS scaling with symmetric topology.

type definition (Line 3-82), model specification (Line 11-56)
and analysis declaration (Line 59-66).

Specifically, we first define commonly used domains as
Charm types on the architectural quantities we care about
(Line 3-8). For example, the parallelism parameter in the
model has a physical meaning of the proportion of the algo-
rithm that can be parallelized and it naturally falls between
[0, 1]. We thus define a type Fraction to encapsulate this
domain constraint. While this is a simple example, more
complex constraints are possible.

We then formally specify the three models (DevM, CorM,
CmpM) to evaluate (Line 11-56). Taking the ExtendedPollack-
sRule model (Line 34-41) as an example, it declares upfront
all the architectural quantities that are involved in the model
(e.g., ref core area which is the core size at the reference
technology node), their types (e.g., ref core area is a real
number on the positive domain) and the relationships be-
tween the architectural quantities, e.g., area = 0.0152per f 2 +

0.0265per f + 7.4393 (the constants come directly from the
original dark silicon paper [4]).

Once the models are defined, it is straightforward to declare
the analysis in Charm (Line 59-66). One simply selects the
given models in the study, supplies the inputs and specifies the
target metrics to explore. For example, in this case, we select
ITRS, ExtendedPollacksRule and SymmetricAmdahl models
(Line 59), provide values such as the area (Line 60) and power
(Line 61) constraints, and finally tell Charm what quantities
we care to explore, in this case speedup, dark silicon ratio
and core num (Line 66).

C. Unstructured High-level Architecture Modeling Pitfalls

Building and executing an architectural model with an
unstructured approach (e.g., in a spreadsheet or some general
purpose scripting language) is clearly possible3, but the lack
of a common abstraction introduces some issues as one tries
to scale the analysis. Each additional interacting component is
a set of new opportunities to make an uncaught mistake.

The degree to which these mistakes end up in the final
model (and the amount of effort required to make sure it
is mistake-free) is a function of the degree of composability,
reusability, consistency and completeness checking supported

2Line numbers in Section II all refer to Listing 1 unless otherwise specified.
3With all the potential issues, unstructured methods in architectural mod-

eling may not be as correct as one tends to believe [20], [21].

1 # Type definitions.
2 # A real number greater than 0.
3 typedef R+ : Real r
4 r > 0
5

6 # A real number between [0, 1].
7 typedef Fraction : Real f
8 0 < = f, f < = 1
9

10 # Simple Fit of the ITRS Scaling (DevM).
11 define ITRS:
12 ref_tech_node : R+ as ref_t
13 ref_core_performance : R+ as ref_perf
14 ref_core_power : R+ as ref_power
15 ref_core_area : R+ as ref_area
16 tech_node : R+ as t
17 core_performance : R+ as perf
18 core_power : R+ as power
19 core_area : R+ as area
20 perf_scaling_factor : R+ as a
21 power_scaling_factor : R+ as b
22 ref_t = 45
23 perf = a * ref_perf
24 power = b * ref_power
25 area / t**2 = ref_area / ref_t**2
26 a = piecewise((1., t=45), (1.09, t=32),
27 (2.38, t=22), (3.21, t=16),
28 (4.17, t=11), (3.85, t=8))
29 b = piecewise((1., t=45), (0.66, t=32),
30 (0.54, t=22), (0.38, t=16),
31 (0.25, t=11), (0.12, t=8))
32

33 # Pollock’s Rule Extended with Power (CorM).
34 define ExtendedPollacksRule:
35 ref_core_performance : R+ as perf
36 ref_core_area : R+ as area
37 ref_core_power : R+ as power
38 area = 0.0152*perf**2 + 0.0265*perf + 7.4393
39 power = 0.0002*perf**3 + 0.0009*perf**2
40 + 0.3859*perf - 0.0301
41 perf < 50
42

43 # Amdahl’s Law under Symmetric Multicore (CmpM_U).
44 define SymmetricAmdahl:
45 speedup : R+ as sp
46 core_performance : R+ as perf
47 core_area : R+ as a
48 core_power : R+ as power
49 core_num : R+ as N
50 chip_area : R+ as A
51 thermal_design_power : R+ as TDP
52 fraction_parallelism : Fraction as F
53 dark_silicon_ratio : Fraction as R
54 sp = 1 / ((1 - F) / perf + F / (perf * N))
55 N = min(floor(A / a), floor(TDP / power))
56 R * A = A - N * a
57

58 # Assumptions are now explicit and composable.
59 given ITRS, ExtendedPollacksRule , SymmetricAmdahl
60 assume chip_area = 111.0
61 assume thermal_design_power = 125.0
62 assume fraction_parallelism = [0.999, 0.99, 0.97,
63 0.95, 0.9, 0.8, 0.5]
64 assume tech_node = [45, 32, 22, 16, 11, 8]
65 assume ref_core_performance = linspace(0, 50, 0.05)
66 explore speedup, dark_silicon_ratio , core_num

Listing 1. Dark silicon analysis on symmetric topology with ITRS scaling.



by the tool. It is easiest to see this if we talk specifically again
about the code of our example dark silicon analysis.

We first note that, although clearly defined conceptually,
the three models needed are each of a different form: DevM
is essentially a table of different scaling factors, CorM is an
empirical set of points and a regression curve and CmpM is
in the form of mathematical equations relating a set of high-
level architectural quantities. Furthermore, even if they were
of the same form, they are not “functions” but rather a set of
mathematical relationships. The distinction is quite important.
With traditional lvalue / rvalue style assignments (common to
both functions and spreadsheets) you end up with four issues:

Composition: It is hard to link the models’ I/O together
or even check if the models can be connected properly
at all. Architectural models usually are connected to each
other through some common system parameters or physical
quantities. In this example, to do the dark silicon analysis,
one needs to take scaling factors from tables in DevM, pass
them as inputs to CorM, apply the values and re-fits the curve
for different tech node, after which one then has to sample
from the two Pareto curves in CorM and supply the samples
to CmpMU for final evaluation. This chain of data movement
and dependency is not explicitly exposed by the models, and
it takes some effort to understand how these models link
together. This issue of mismatched form is even more acute
when one wishes to switch out the CmpM core model with
the CmpMR core model because CmpMR takes a completely
different set of inputs. With unstructured methods, one has to
explicitly program these connections typically by function call
chains. With Charm, one simply specifies all variables upfront
within each model, and as long as the full variable names
are consistent, Charm “wires up” the models through these
channelling I/O variables. Perhaps most importantly, Charm
throws an error when the models cannot be properly linked.
For example, if one forgets to provide values for technology
node (Line 64), Charm will complain that too many variables
are free, or if the scaling model is about transistor rather
than processor core, as long as the variables are properly
named (e.g., one does not name transistor performance as core
performance), Charm will capture this mismatch and warn that
the models cannot be connected.

Restructuring and Reorientation: The models cannot be
evaluated in a flexible way. Even though the model is a
relationship between quantities, in spreadsheets or scripting
languages one has to implement the evaluation as functions
with fixed arguments. In this example, one typically codes
up to evaluate the speedup from given value of core perfor-
mance. If the control quantity is changed to another, say core
area, one has to fix the code. An even worse, and probably
more interesting, case is when the control becomes the one
under investigation, i.e., the input/output of the functions are
reversed. In our example here, it happens when one wishes to
explore the core count constraint given a target dark silicon
ratio. There is no easy way for ad hoc methods to deal with
this kind of flexibility but to completely reprogram. While in

Charm, models are interpreted as a set of mutually dependent
relationships without a fixed direction, and Charm runtime will
generate the needed functions based on the provided controls
and the quantities to explore.

Reasoning under Uncertainty: Architectural models usually
involve some uncertainties [16], such as how technology may
scale over the next 10-15 years. It is natural for computer
architects to first evaluate the model with some concrete values
(e.g., the scaling factors in Line 26, 29) and then model
the uncertain quantity as some distribution, e.g., Gaussian
distribution, as in our case studies in Section IV. It requires
non-trivial programming effort with spreadsheets and scripting
languages to support uncertain random variables. Charm sup-
ports different forms of input values such as scalars, vectors
as well as distributions to ease architectural exploration.

Exploration: The analysis procedure is often coupled with the
model definition. A common practice for computer architects
is to explore the design space by iterating over a set of design
options or different values for some system configuration
knobs. With the high-level models, architects usually write
imperative instructions to iterate over specific variables, and
when the iterative variable changes to another, it quickly
becomes tedious and error-prone to break and reconstruct the
many-fold nested for loops. Charm decouples the model spec-
ification (Line 11-56) from the analysis procedure declaration
(Line 59-66). Such iterations over input values are declarative
and transparent (as opposed to writing for loops imperatively)
by simply providing a list of values as inputs (Line 62, 64 and
65) in Charm.

Secondly, computer architectural quantities often have cer-
tain physical meanings. For example, core performance typi-
cally cannot be negative. A potential issue with unstructured
methods is that these boundaries are usually only programmed
ad hoc in spreadsheets or scripting languages. A negative core
performance may be totally mathematically valid and will
lead to meaningless misleading result if not captured in the
unstructured implementation. This issue is even more likely
to occur in the following two cases.

Implicit Domain Constraints: Architectural models typically
have their range of operation. Aside from the physical con-
straints, implicit domain constraints also come from how the
model is built at first place. In the dark silicon example, the
normalized performance of the real data points that the authors
used to generate the CorM is in the range of (0, 50). Even
though one can argue that a core with normalized performance
of 100 generally follows that regression but the result derived
from that is much less accurate and trusted. This type of
constraints are at most times only implicitly conveyed through
the model building process, where it leads to a potential
pitfall when the model is reused, especially when one only
tries to interpret and re-implement the model from natural
language descriptions (like in a published paper). While Charm
encourages model builders to put in these implicit constraints
explicitly as constraints built in the model specifications, e.g.,
Line 41. Charm will automatically check to see if these



var, rn, tn ∈ Name rel ∈ Relation

val ∈ Value

p ∈ Program :=
−→
td
−−−→
rde f −→a explore −−→var

td ∈ TypeDe f inition := typedef tn
−→
rel

rde f ∈ RuleDe f inition := define rn
−−−−→
rdecl

rdecl ∈ RuleDeclaration := var tn | rel

a ∈ AnalyzeS tatement := given −→rn | assume −−−→asmt

asmt ∈ Assignment := var = val

Fig. 2. Abstract syntax of charm. A program is a sequence of type
definitions, rule definitions, analysis statements, and a list of variables to
explore. Relations are atomic with respect to the semantics; they use the
syntax and semantics of the backend solver. They use the standard arithmetic
and comparison operators, and allow lists, tuples, and real numbers as possible
values.

constraints are violated during evaluation.

Unbounded Distributions: Many architectural quantities fol-
low normal distribution such as core frequency due to process
variability [22]–[24]. When using these types of unbounded
distributions, it sometimes violates the physical constraints
of the quantity (frequency must be positive). In unstructured
modeling, this check is completely ad hoc and, if overlooked,
will lead to meaningless results. With Charm, this issue is
automatically handled by the type checker, as long as one
specifies a correct type for the quantity, e.g., frequency : R+.

Last but not least, the design space to cover is typically huge
with high-level models. In the dark silicon model, the authors
explore a hundred core configurations for each combination of
a scaling trend in DevM and a CMP model from CmpMU or a
workload with CmpMR. The models are often to be evaluated
hundreds of thousands, if not millions, of times which will
take a non-trivial amount of time. It only becomes worse when
one tries to evaluate models with uncertainties [16]. Without
a structured system, a quick spreadsheet or naive prototyping
will end up with unacceptable performance when the problem
is scaled up and the burden of optimization falls upon the
model builders and others who wish to use existing models
through re-implementation. As we show in Section IV, with
the invariant hoisting and memoization techniques, Charm
greatly speeds up the exploration without additional effort from
the model builders.

III. Charm Design

Charm provides a simple domain specific modeling lan-
guage to express both closed-form models and the design
space exploration dimensions. The DSL has an easy-to-use
Python-like syntax. In terms of mathematical expressiveness,
Charm supports all common closed-form algebra that com-
puter architects often resort to, including linear algebra like
polynomials and simple non-linear algebra like exponentiation.
Basic non-closed-form functions like summation and product
are also supported. To enhance the design space exploration to

uncertain domains, Charm also supports distributional values
to be set and propagated through the models transparently.
Once written in Charm DSL, the interpreter is able to trans-
form the mathematical relationships and constraints into a
series of data-flow graphs for fast evaluation. A type system is
applied to make sure all architecturally meaningful quantities
operate in the correct domain. Charm also optimizes the design
space exploration procedure using compiler techniques to
eliminate redundant computation. Figure 4 graphically shows
the interpretation process.

In this section, we first describe the abstractions Charm
provides and formalize the syntax and semantics of Charm
DSL. We then articulate the internal design of the interpreter
and how type checking, definability checking, evaluation and
optimization are done in Charm.

A. Language Abstractions

Charm provides a common layer with three key abstractions
to address all the potential issues in Section II-C. In Charm
DSL, five keywords are reserved to express three abstractions:
types, models and analysis.

Keyword typedef translates into the first abstraction: type.
The type system is designed to be simple but useful: each type
is essentially a base type with constraints, e.g., R+ is defined
as a positive number of base type real in Listing 1 Line 3-4.
There are only two base types, Real and Integer standing for
real numbers and integer numbers respectively. Internally, real
numbers are represented by float and integers by int.

The second key abstraction is model. Keyword define con-
structs a model. A model specification in Charm encapsulates
the following three pieces in a high-level architecture model.

A set of variables. Each variable has a universally consistent
full name. Each variable also has a local short name (optional),
as well as explicitly declared types. The short names only live
within the definition and the full names are exported to other
models and the analysis.

A set of equations. Equations define mathematical relation-
ships between variables using either their full or short names
(e.g., Listing 1 Line 54-56). Both linear and nonlinear systems
are present in the common architectural models we care about.
The general problem of trying to determine the definability
of and solving such systems is theoretically hard and beyond
the scope of this work. Given the limitations of the solving
capabilities of the back-end solvers, some very complicated
non-linear equations cannot be symbolically solved (e.g.,
solve for x in y = (a1/x)2x

). Fortunately, we find that most
models computer architects care about (even complicated as
quantum computing in Section IV-B) are well within the
limit. Equations can also bind variables to constant quantities
as assumptions defined within the model specification (e.g.,
kBoltzmann = 8.6173303 × 105).

A set of constraints. Inequalities define additional constraints
on variables or expressions (e.g., Listing 1 Line 41). The
difference between equations and constraints in Charm is that
equations can be value generative if all but one variable are



C,D, E,Ω ∈ RelationS et Γ ∈ TypeEnvironment = Name→ RelationS et
Θ ∈ RuleEnvironment = Name→ RelationS et µ ∈ VariableMap = Name→ Value

C =

{
c | c ∈

−→
rel

}
typedef tn

−→
rel ⇓T (tn,C)

typedef

(Γ, rdecli) ⇓ Ci C =
⋃

Ci

i ∈ 1..|
−−−−→
rdecl|(

Γ,define rn
−−−−→
rdecl

)
⇓R (rn,C)

ruledef Γ (tn) = C
(Γ, var tn) ⇓ C [var/tn]

rd-var

( , rel) ⇓ {rel}
rd-rel

Ci = Θ (rni) C =
⋃

Ci i ∈ 0..|−→rn|(
Θ, given −→rn

)
⇓A C

given (
, assume −−−→asmt

)
⇓A

{
e | e ∈ −−−→asmt

} assume
Ext(x) = ∅

∨
Ext(y) = ∅

∨
Ext(x) = Ext(y),∀x, y ∈ vars(rel)

ω =
{
α(a) | a ∈

⋃
Ext(bi),∀bi ∈ vars(rel)

}
α(a) = rel

[
x.a/x,∀x ∈ vars(rel)

]
rel ⇓M ω

multi-instance

Γ(tni) = Ci where tdi ⇓T (tni,Ci) Θ(rn j) = D j where
(
Γ, rde f j

)
⇓R (rn j,D j)

Ω =
⋃

Ek where (Θ, ak) ⇓A Ek Ω′ =
⋃
{ω | rel ⇓M ω

∧
rel ∈ Ω} isConsistent (Ω′)

isFullyDetermined
(
Ω′,−−→var

)
µ = SOLVE

(
Ω′,−−→var

)
i ∈ 1..|

−→
td| j ∈ 1..|

−−−→
rde f | k ∈ 1..|−→a |

−→
td
−−−→
rde f −→a explore −−→var ⇓P µ

program

Fig. 3. Operational semantics of Charm. Relations are here taken as atoms; they use the semantics of the backend solver engine. An overhead arrow indicates
a sequence of one or more elements. C[x/y] indicates to substitute all instances of y in C with x. vars returns the names of all variables used in the relation
set, while Ext returns all extensions of a variable (portion of the name appearing after a dot when multi-instanced). isConsistent ensures the relation set
is consistent. isFullyDetermined ensures the relation set is fully determined with respect to −−→var. SOLVE is an instance of the backend solver; it returns a
mapping of all specified variables to values (real numbers, lists, and tuples). typedef takes a type definition and returns a tuple with type name and relation
set. ruledef takes a rule definition and the type environment and returns a tuple with rule name and relation set. rd-var takes a type rule declaration and the
type environment and returns a relation set, where relations on the indicated type now apply to the indicated variable. rd-rel takes a relation rule declaration
and returns the same relation in a set. given takes a given analyze statement and the rule definitions and returns the relation set of the indicated rule. assume
takes an assume analyze statement and returns a relation set of all the declared equalities. multi-instance takes a relation and returns a set of relations, where
the original relation is duplicated once for each extension possessed by its variables, with the names of the variables replaced by their extended version (as
discussed in section III-B). program takes a program and returns a map for the list of exploration variables, mapping each to real numbers, lists, and tuples
determined by the backend solver.

given, while constraints require all variables given during
evaluation. Inequalities are by definition constraints and, when
all variables are given, an equation is over-determined and
turns into a constraint. We refer to the set of both equations
and constraints as relations.

Charm DSL accepts different mathematically equivalent
forms of relations, so that different modelers with different
background expertise can write the math in the conventional
way of their own fields and use other models directly as they
are without rewriting.

The Charm DSL is strongly typed. The model abstraction
enforces explicit type declaration to make sure there are not
implicit assumptions about data types and domains across
models.

Charm abstracts the common structure of an analysis with
three keywords: given, assume and explore.

Before computation, given statement selects the model in
the analysis. If multiple models are selected, they are linked
together automatically by the interpreter. Full names of vari-
ables are used to connect each other across models.

Although in general, many algebra systems can be solved
without additional inputs, for computer architecture models,
at most times, some control quantities need to be given (e.g.,
design options like core size and system configurations like
cache associativity) in order to solve for the quantities under
investigation (e.g., speedup of a CMP). Keyword assume
serves such purpose by differentiating assignment equal signs
from mathematical equal signs inside model specification, i.e.,
assume statements are assignments much like in other pro-
gramming languages while equations in model specification
are merely mathematical relationships which do not imply a
direction of data movement. Charm also constrains assume
statements to be assignment with constants, i.e., they can only
be used to express external inputs to the model rather than
defining additional relations outside of the model specification.

Charm supports both scalar and vector value assignments,
as well as random variable of commonly used distributions,
e.g., Gaussian Distribution.

Iteration is expressed in a Pythonic list-like syntax or
functions that generates a list, e.g., linspace, and assigned
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Fig. 4. Overview of Charm interpreter. The example system has 3 equations
(Eq1, Eq2 and Eq3), 1 constraint (Con1) and 5 variables in which c is
the iterative input. In this example, we are tying to explore the relationship
between e and c given a. The parser takes Charm source code and breaks it
into a set of types, a set of model definitions and a set of analysis statements.
Charm then links types, models and assignments in a dependency graph after
they go through the type checker. The graph then is fed to a function generator
and a symbolic solver to convert it into a functional graph. The optimizer
finally takes the functional graph and annotate it with hints for execution
before it finally gets evaluated and checked against model constraints.

to some input variable just like a normal assume statement
(e.g., Listing 1 Line 65). Charm handles iteration naturally
by selecting combinations of all iterative input values non-
repeatedly from their Cartesian space in a Gray code fashion.
Two special cases are: a), if two or more input variables
are dependent, they can be expressed like Python tuple as-
signment, e.g., assume (tech node, f req scaling f actor) =

[(45, 1.), (32, 1.09)] and b), if a variable is indexed, it can be
expressed using special “list” notation after its variable name,
e.g., assume L[] = [1, 2], which means L[0] = 1 and L[1] = 2.
These notations become handy when we write the quantum
models with Charm in Section IV-B.

Finally, an analysis is completed by specifying which quan-
tities to solve for symbolically and evaluate using explore.
Charm exploits a data-flow centric approach and builds a
directed acyclic functional graph internally to propagate given
values through linked models to the final responsive variables
architects wish to explore.

Figure 2 gives the abstract syntax of Charm and Figure 3
formalizes the semantics.

B. Language Internals

In order to evaluate the models and optimize the evaluation
logic, Charm uses two data-flow graph structures internally to
represent and transform the computation. In this section, we
first define the core graph data structures and then describe
how we can perform type checking, function generation,
evaluation and optimization with these graph structure.

Dependency Graph. A dependency graph is a bipartite graph
G =< Vvar,Vrel, E >, where:
• Vvar is the variable node set in which every variable in

the selected models is a vertex.
• Vrel is the relation node set and Vrel = Veq ∪ Vcon, where

Veq is the set of vertices in which every equation in the
selected models is a vertex; Vcon is the set of vertices in
which every constraint in the selected models is a vertex.

• E is the set of edges and there exists an edge between
vertices in Vvar and Vrel if and only if the variable name
appears in the relation.

Functional Graph. A functional graph is a directed acyclic
dependency graph D in which:
• Every node in Vvar has at most 1 incoming edge, i.e., its

in-degree being 0 or 1.
• Every node in Veq has at most 1 outgoing edge, i.e., its

out-degree being 0 or 1.
• Every node in Vcon has no outgoing edge, i.e., its out-

degree being 0.

Dependency graph building and static type checking. To
build the dependency graph from the models, Charm performs
a single scan over all relations in the models. It assigns a
variable node to every variables with a unique full name (in-
cluding variables automatically generated by multi-instancing)
and an equation/constraint node to every equation/constraint.
When creating relation node, Charm creates an edge between



the equation/constraint node to a variable node if the variable
is used in the equation/constraint. Finally, Charm scans the
analysis statements and marks variable nodes being assigned
as input nodes.

Charm performs simple type checking both statically when
building the dependency graph after parsing and dynamically
when checking constraints at runtime. Static type checking is
done by tracking the variable names and types when building
the dependency graph. Each variable must be declared with
an explicitly defined type. If a variable name is used by
two or more relations, we check that their defined types are
identical (both base type and constraints associated). Charm
aborts execution and issues an error message for inconsistent
types.

Relation Multi-instancing. When building a dependency
graph, different variables sometimes follow the same math-
ematical relationships. An example is core per f ormance.big
and core per f ormance.small defined in Listing 2 Line 5-
6. Both of them follow equation in Listing 1 Line 23 when
plugged in for evaluation. We discuss their physical meanings
later in Section IV-A, but they are essentially two variables
following the same mathematical relationship. We refer this
behavior as “relation multi-instancing” and use the dot nota-
tion (a variable name and a name extension concatenated by
dot, e.g., core area.big) to invoke multi-instancing. Charm in-
ternally creates variable nodes and relation nodes for multiple
instances with different name extensions. Figure 5 shows how
these nodes in the dependency graph are created. The model is
ill-defined if Charm fails to find extended input variables with
consistent name extensions or discovers inconsistent name
extension sets for different variables trying to invoke multi-
instancing.

Functional graph building and function generation. After
building the dependency graph G, the function converter tries
to convert G into a functional graph F. If it can convert
successfully, there is a viable solution when all equations or
sets of equations can be solved and lambdified by the back-end
symbolic solver, and therefore the models can be evaluated by
Charm.

The function converter backtracks through G in a DFS
manner and tries to label all the edges with a direction
without introducing a conflict. A conflict occurs when an
equation node has more than one outgoing edges or when
an inequality node has any outgoing edge or when a vari-
able node (excluding input nodes) does not have exact one
incoming edge. If there is a successful labeling of all edges,
Charm uses Sympy [25] as the back-end solver to convert all
equations and constraints (all inequalities and equation nodes
with an out-degree of 0 are considered as constraints at this
point) into callable functions with inputs being the variables
directly pointing to the equation/constraint and output being
the variable pointed at by the equation node. As part of
type checking, each variable node is also associated with
the constraint from its type. These type constraints are also
lambdified and evaluated during evaluation. The search space
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for conversion is in practice greatly reduced by the following
heuristics:
• All edges with one node being input node have fixed

direction (from the input node).
• All edges with one node being a dangling variable node

(variable node that has only one edge) have fixed direction
(to the variable node).

• All edges with one node being a constraint have fixed
direction (to the constraint node).

Cycle elimination. A functional graph F must be acyclic



in order to evaluate. However, when there are codependent
equations, they form cycles. In case of a cycle, all equation
nodes in the cycle must be solved altogether. We pass the
equations in a cycle to the solver at once and then replace the
cycle with pairs of function node and variable node, where
each pair is a mapping between all inputs to the cycle (a
dummy input node is created if there are no inputs from
other parts of the graph to the cycle) and one variable node
inside the cycle. Each function node generated by the cycle
has one variable along the cycle as its output and all functions
generated by the cycle are from the same set of equations, only
with different variables as output. Figure 6 shows an example
of cycle elimination in F.

Computational constraints. A special computational con-
straint is applied when building a functional graph: some
mathematical operators are not reversible or have infinite
solutions, such as

∑
and

∏
, some are computationally hard

for the solver, like solving x in y = (a1/x)2x
. For the non-

reversible equation, its direction is fixed, i.e. its edges have
fixed direction not subject to the function converter.

Evaluation and constraint checking. Once we have a viable
functional graph F, a feasible solution is to derive from all
input nodes and propagate the given values by traversing
F. Each following function/constraint node is transformed
using higher-order functions to “remember” propagated partial
values before all inputs are ready and it can be evaluated.

Optimization. Oftentimes architects explore the relationship
between two variables by iterating over different input values.
One simple yet effective optimization is invariant hoisting.
With the functional graph structure, it is straightforward to
optimize for invariant in Charm. From each iterative variable
node, Charm simply traverse from that node, then all nodes
that cannot be reached from the iterative input nodes are
invariant to iteration over that input. In the simple illustrative
example in Figure 4, c is iterative and a, b, Fn1 are invariant
because there are not paths from c to them.

Each function node also caches a mapping table between
inputs and its output. Such memoization optimizes away
unnecessary re-computation over same set of input values.

IV. Case Studies

In this section, we demonstrate the application of Charm
using two case studies. In the first case study, we show
the benefits of Charm by extending the dark silicon analysis
with a different topology and a distribution of technology
scaling. We also compare the execution times with and without
optimization.

The second case study focuses more on the problem of
modeling a critical resource in fault-tolerant quantum comput-
ing and performs exploration with varying physical error rate.
Interestingly, when validating Charm results in the second case
study, Charm helps find inconsistent model definition errors,
which are silently propagated through by Mathematica [26]
and would have led to incorrect results.

1 # Amdahl’s Law under Asymmetric Multicore (CmpM_U).
2 define AsymmetricAmdahl:
3 speedup : R+ as sp
4 # here we need two types of perf, area, power
5 core_performance.big : R+ as big_perf
6 core_performance.small : R+ as small_perf
7 core_area.big : R+ as big_a
8 core_area.small : R+ as small_a
9 core_power.big : R+ as big_power

10 core_power.small : R+ as small_power
11 core_num : R+ as N
12 chip_area : R+ as A
13 thermal_design_power : R+ as TDP
14 fraction_parallelism : Fraction as F
15 dark_silicon_ratio : Fraction as R
16 sp = 1 / ((1-F)/big_perf + F/(N*small_perf+

big_perf))
17 N = min(floor((A - big_a)/small_a),
18 floor((TDP - big_power)/small_power))
19 R * A = A - (N * small_a + big_a)
20 big_perf >= small_perf
21

22 given ITRS, ExtendedPollacksRule , AsymmetricAmdahl
23 assume ref_core_performance.big=linspace(0,50,0.05)
24 assume ref_core_performance.small=linspace

(0,50,0.05)

Listing 2. Asymmetric model and the changes in code.

1 # Conservative scaling model (DevM).
2 define ConservativeScaling:
3 ...
4 a = piecewise((1., t=45), (1.10, t=32),
5 (1.19, t=22), (1.25, t=16),
6 (1.30, t=11), (1.34, t=8))
7 b = piecewise((1., t=45), (0.71, t=32),
8 (0.52, t=22), (0.39, t=16),
9 (0.29, t=11), (0.22, t=8))

10

11 given ConservativeScaling , ExtendedPollacksRule ,
AsymmetricAmdahl

Listing 3. Conservative scaling and the changes in code.

A. Dark Silicon and Beyond

Listing 2 highlights all the changes that we need to imple-
ment in Charm to model and switch the DSE from symmetric
topology to asymmetric. Note that in the asymmetric model,
“relation multi-instancing” comes in handy when expressing
two co-existing types of core. To switch the analysis, all we
need to do is to change the models that are given (Listing 2
Line 22) and provide values for two types of core instead of
one (Listing 2 Line 23-24). We also write a new constraint
(Listing 2 Line 20) to specify the fact that the big core should
have better performance than the small core.

It’s even simpler to switch from ITRS scaling predictions
to the conservative predictions [19]. Listing 3 shows all the
changes needed. Figure 7 plots the resulting scaling trends for
the asymmetric topology.

One interesting question one may ask is “what if the
actual technology scaling is somewhere in between the two
predictions?” We explore the design space with a distribution
of scaling factors. We use a Gaussian distribution for the
scaling factor, the mean of which being the average value
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Fig. 7. Upper-bound scaling with asymmetric topology with tech node on x-axis. Note that the last figure of optimal core count has a linear-scale y-axis to
better demonstrate the variance. For clarity we only plot two regions in the uncertain scaling results, but the trends for other f values are similar.

between the two extremities and the standard deviation being
the difference between the mean and the extremities. Listing 4
shows the necessary changes in Charm code. It is important
that although Gaussian distribution is not bounded, the scaling
factors have a bounded domain. The type checking in Charm
makes sure that the scaling factors a and b operate only in their
defined domains (see Listing 1 Line 20-21), and the provided
Gaussian distribution is converted to a truncated Gaussian
distribution with the same mean and standard deviation within
Charm. From Figure 7, we can see that with the technology
scaling, the more parallel workload (with an f close to 1)
shows more sensitivity towards technology uncertainties while
the more serial workload is less sensitive to the changes in
the core performance and power. Another probably even more
interesting observation is that the optimal core count of the
most performant configuration becomes very uncertain once
we hit 11nm and beyond. The uncertainty grows sharply from
16nm to 11nm mainly because below 11nm, the CMP is
mainly area bounded, and since the area scaling is certain
(Listing 1 Line 25), it limits the amount of uncertainty that
gets propagated to the optimal core count. Meanwhile, when
the tech node scales to 11nm and beyond, the CMP becomes
power bounded and is extremely sensitive to the power
uncertainties propagated from the uncertainty of the power
scaling factor.

Figure 8 shows the actual functional graph generated by
Charm. In terms of execution performance, we compare

1 # Distributional scaling model (DevM).
2 define DistScaling:
3 ...
4 a = piecewise((1.,t=45),(Gauss(1.095,0.005),t=32),
5 (Gauss(1.785,0.595),t=22),(Gauss(2.23,0.98),t=16),
6 (Gauss(2.735,1.435),t=11),(Gauss(2.595,1.255),t=8)

)
7 b = piecewise((1.,t=45),(Gauss(0.685,0.025),t=32),
8 (Gauss(0.53,0.01),t=22),(Gauss(0.385,0.005),t=16),
9 (Gauss(0.27,0.02),t=11),(Gauss(0.17,0.05),t=8))

10

11 given DistScaling , ExtendedPollacksRule ,
AsymmetricAmdahl

Listing 4. Uncertain scaling and the changes in code.

Charm execution to an unoptimized baseline in which all
computation is re-done per iteration (no invariant hoisting
nor memoization). For ITRS or conservative scaling with
asymmetric topology (a design space of 150K design points),
full-blown Charm finishes on average within 120.5s, while the
unoptimized implementation uses 159.5s (1.3X speedup). For
the uncertain scaling with a MC sample size of 200 (1̃ million
design points), optimized Charm uses 1562.5s, and it takes
5703.1s for the baseline implementation (3.6X speedup) on a
single Intel i7 core at 3.3GHz to finish.
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B. Surface Code Error Corrected Quantum Application and
Architecture Co-optimization

In this section, a high level model for the resource overhead
for implementing magic state distillation on surface code [5]–
[7] is described and implemented within the Charm frame-
work, which is used to pinpoint nontrivial interactions between
fundamental system parameters.

For this study, we focus primarily on the Bravyi-Haah
“3k + 8 → k” procedure [5] augmented with the block-
code protocol. By recursively stacking magic state distillation
protocols in a tree-like fashion, one can generate arbitrarily
high-fidelity magic states, which is required by a quantum
program [7]. The space required by one round of Bravyi-Haah
magic state distillation is given by the number of physical
qubits required to run the circuit. Using block code, the
procedure will consume (3k +8)`−1(6k +14)d2 physical qubits,
where d is the surface code distance we are using.

Adding more factory capacity K results in more output
magic state capacity (higher effective rate). However this also
adds more components to the factory that may fail. In fact,
a magic state factory has a yield rate proportional to the
output capacity K that is caused by uncertainty in the success
probability of the underlying Bravyi-Haah protocol. This yield
rate scales as:

Koutput = k` ×
∏̀
r=1

[
1 − (3k + 8)εr

]
(1)

where εr = (1 + 3k)2r−1ε2r

in , because each level of the process
results in incrementally higher fidelity (i.e., lower error rate).

Given a T gate request distribution D representing a pro-

gram, the number of iterations needed to distill is:
Tpeak∑
t=0

(
s ·
√

K′ +

√
t − sK′

2
· R

)
· Lcp · D[t], (2)

where s =
⌊

t
K′

⌋
, and R = 7d+15

24d` . All of these equations combine
to form a high level space-time estimate of the resources
required to execute a quantum application on a machine with
a specified magic state distillation factory architecture.

Using Charm, we are able to analyze the underlying sensi-
tivity of different magic state factory architectures to variations
in the underlying error rate of the physical system. We examine
two different design cases, one where the factory is designed
assuming a 10−3 error rate, and one assuming a 10−5 error
rate. Figure 9 illustrates that while the time-optimal factory
does show a lower expected space-time volume, it also shows
significantly higher uncertainty and spreads in performance
values over the space-optimal factory. This design point clearly
motivates that quantifying the uncertainty of a physical device
is necessary to lead to risk-optimal system designs that per-
form well on a given system.

Charm is able to discover and quantify this trend with
minimum effort, and allows for a quantitative analysis to be
performed on these designs that will aid the construction of
physical systems. Additionally, implementing this high level
performance model in Charm allows for validation and more
domain-specific error catching that previous implementations
in Mathematica has been unable to catch. Specifically, a
previous implementation has an incorrect parameter passed
into a distance calculation function that Mathematica allowed
to flow through. Charm is able to detect this error, warns that
the models cannot be connected properly which helped correct
the results of the model.

V. RelatedWork

A. Closed-form Architecture Models

Many of the recently developed high-level analytical models
are conceptually inherent from the well known Amdahl’s
Law [27], which is often expressed as a closed-form perfor-
mance model of parallel programs. The most well studied
derivative is the multicore performance model by Hill and
Marty [17]. A long line of research work using extensions
of their closed-form model focus on different aspects of
the system, including application [28], communication and
synchronization [29], [30], energy and power consumption [4],
[31], heterogeneity [11], [32], chip reliability [33], architec-
tural risk [16] and so on. Our language consumes these models
and provides a systematic way to establish new high-level
models either by constructing new equations and constraints
or reusing those from the above models.

Another set of analytical performance model is built directly
from the mechanisms of the specific system [8], [9], [34]–
[42]. These models usually rely on some simulations/hardware
counter to collect the necessary inputs to their core closed-
form equations. Our language can also express and manage
these equations. Empirical modeling [43]–[51] is also used to
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Fig. 9. Factories designed with an implied low physical error rate only require concatenation up to ` = 1 level, while more pessimistic factories require
` = 2. While larger factories with K = 50 consistently show lower mean space-time consumption, they also suffer from large performance uncertainty when
the assumed design error rate varies.

discover correlation between two or more architectural quanti-
ties. They can usually be expressed as parametrized equations
in closed-form, the resulting models of such empirical methods
can also be managed by and benefit from Charm.

B. Systems and Languages Supporting Analytical Modeling

There exist systems and languages that support structured
analytical modeling. Modelica [52] supports multi-domain an-
alytical modeling with an emphasis on object-oriented model
composition, but the connection of models need to be ex-
plicitly dictated and the design space exploration require user
intervention, while Charm is more restricted and thus able
to automatically link models and generate exploration loops.
Aspen [53] provides a DSL to express application and an
abstract machine organization in order to model performance.
Palm [54] utilizes source code annotation to build analytical
model for the application. LSE [55] is a fully concurrent-
structural modeling framework designed to maximize reusabil-
ity of components. There are also many other works in the field
of HPC for automatic performance modelling extracting [56]–
[58]. Most of these languages and systems serve a different
purpose of expressing mapping between performance/power
model and specific detailed application/architecture and are not
well-suited for high-level analytical design space exploration.
While Charm is tailored for structured yet flexible exploration
of the interactions between architectural variables as well as
their ramifications at a high level. There are also a few systems
exploiting the power of symbolic execution for modeling [16],
[20], but Charm provides more capabilities around formal-
izing, checking and evaluating the models. There also exits
a tool [59] of the same name CHARM (Chip-architecture
Planning Tool) which uses a knowledge-based scheme to ease
high-level synthesis.

The internals of Charm resemble some of the data-flow cen-
tered programming languages in the field of incremental/reac-
tive programming [60]–[64] but differ in that Charm is highly
restrictive. The restrictiveness means that Charm is more of
a modeling language rather than a programming language,
i.e., Charm does not support general purpose structures like
loops and function calls but supports a malleability useful for
exploration (e.g., reversing input/output dependencies).

VI. Conclusion

Computer architecture is a rapidly evolving field. Com-
plex and intricately interacting constraints around energy,
temperature, performance, cost, and fabrication create a web

of relationships. As we move toward more heterogeneous
and accelerator-heavy techniques, our understanding of these
relationships is more fundamental to the process of design
and evaluation than ever before. Already today we are seeing
machine learning [65], cryptography [66], and other fields
attempting to pull architectural analysis into their own work –
sometimes introducing serious bugs along the way. Architec-
ture is now a field that is expected to make scientific statements
connecting nanoscale device details to the largest warehouse
scale computers and everything in between. Spanning these
11 orders of magnitude will require more complex analytic
approaches to be used in tandem with the traditional simulation
and prototyping tools that computer architects have long relied
on.

Charm provides domain specific language support for ar-
chitecture modeling in a way that leads to more flexible,
scalable, shareable, and correct analytic models. While our lan-
guage already supports symbolic restructuring, memoization,
hoisting, and several optimization and consistency checks,
Charm is merely the first step towards a more powerful and
useful modeling language for computer architects. It is easy to
imagine other useful additions in the future such as checks on
the consistency of physical types (e.g., nJ versus pJ errors) or
back-ends connecting models to non-linear optimizers. Most
importantly though, by giving the sets of mutually dependent
architectural relationships a common language, Charm along
with the collection of established models have the potential
to enable more complete and precise specification, easier
composition, more through checking, and (most importantly)
broader reuse and sharing of complex analytic models. Look-
ing forward we see that tools such as this hold significant
promise in enabling more collaborative and community driven
efforts that make our best thinking on the future of architecture
more readily and easily accessible to all that are interested.

Acknowledgment

This material is based upon work supported by the National
Science Foundation under Grants No. 1740352, 1730309,
1717779, 1563935, 1444481, 1341058, 1730449, 1660686,
Los Alamos National Laboratory and the U.S. Department
of Defense under subcontract 431682 and gifts from Cisco
Systems and Intel Corporation.

The authors would like to thank Michael Christensen for
his help with formalizing the semantics and the anonymous
reviewers for their invaluable feedback.



References

[1] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and
K. Strauss, “A dna-based archival storage system,” in Proceedings of
the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’16.
New York, NY, USA: ACM, 2016, pp. 637–649. [Online]. Available:
http://doi.acm.org/10.1145/2872362.2872397

[2] A. Javadi-Abhari, P. Gokhale, A. Holmes, D. Franklin, K. R. Brown,
M. Martonosi, and F. T. Chong, “Optimized surface code communication
in superconducting quantum computers,” in Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-50 ’17. New York, NY, USA: ACM, 2017, pp. 692–705.
[Online]. Available: http://doi.acm.org/10.1145/3123939.3123949

[3] X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi,
I. Ashraf, R. F. L. Vermeulen, J. C. de Sterke, W. J.
Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and
K. Bertels, “An experimental microarchitecture for a superconducting
quantum processor,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-50 ’17.
New York, NY, USA: ACM, 2017, pp. 813–825. [Online]. Available:
http://doi.acm.org/10.1145/3123939.3123952

[4] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in
Proceedings of the 38th Annual International Symposium on Computer
Architecture, ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp. 365–
376. [Online]. Available: http://doi.acm.org/10.1145/2000064.2000108

[5] S. Bravyi and J. Haah, “Magic-state distillation with low overhead,”
Physical Review A, vol. 86, no. 5, p. 052329, 2012.

[6] A. G. Fowler, S. J. Devitt, and C. Jones, “Surface code implementation
of block code state distillation,” Scientific Reports, vol. 3, p. 1939, jun
2013.

[7] J. O’Gorman and E. T. Campbell, “Quantum computation with realistic
magic-state factories,” Physical Review A, vol. 95, no. 3, p. 032338,
2017.

[8] M. Breughe, S. Eyerman, and L. Eeckhout, “A mechanistic performance
model for superscalar in-order processors,” in 2012 IEEE International
Symposium on Performance Analysis of Systems Software, April 2012,
pp. 14–24.

[9] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic
performance model for superscalar out-of-order processors,” ACM Trans.
Comput. Syst., vol. 27, no. 2, pp. 3:1–3:37, May 2009. [Online].
Available: http://doi.acm.org/10.1145/1534909.1534910

[10] B. Agrawal and T. Sherwood, “Modeling tcam power for next gen-
eration network devices,” in 2006 IEEE International Symposium on
Performance Analysis of Systems and Software, March 2006, pp. 120–
129.

[11] M. S. B. Altaf and D. A. Wood, “Logca: A high-level performance
model for hardware accelerators,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ser. ISCA ’17.
New York, NY, USA: ACM, 2017, pp. 375–388. [Online]. Available:
http://doi.acm.org/10.1145/3079856.3080216

[12] J. Clow, G. Tzimpragos, D. Dangwal, S. Guo, J. McMahan, and
T. Sherwood, “A pythonic approach for rapid hardware prototyping
and instrumentation,” in 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), Sept 2017, pp. 1–7.

[13] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing fpga-based accelerator design for deep convolutional
neural networks,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’15. New
York, NY, USA: ACM, 2015, pp. 161–170. [Online]. Available:
http://doi.acm.org/10.1145/2684746.2689060

[14] A. B. Kahng, B. Li, L. S. Peh, and K. Samadi, “Orion 2.0: A fast
and accurate noc power and area model for early-stage design space
exploration,” in 2009 Design, Automation Test in Europe Conference
Exhibition, April 2009, pp. 423–428.

[15] Xilinx, “7 series product tables and product selec-
tion guide,” February 2018, online. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/selection-guides/7-
series-product-selection-guide.pdf

[16] W. Cui and T. Sherwood, “Estimating and understanding architectural
risk,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-50 ’17, 2017.

[17] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, Jul. 2008. [Online]. Available:
http://dx.doi.org/10.1109/MC.2008.209

[18] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C.
Weiser, “Many-core vs. many-thread machines: Stay away from the
valley,” IEEE Computer Architecture Letters, vol. 8, no. 1, pp. 25–28,
Jan 2009.

[19] S. Borkar, “The exascale challenge,” in Proceedings of 2010 Interna-
tional Symposium on VLSI Design, Automation and Test, April 2010,
pp. 2–3.

[20] T. Antoniu, P. A. Steckler, S. Krishnamurthi, E. Neuwirth, and
M. Felleisen, “Validating the unit correctness of spreadsheet
programs,” in Proceedings of the 26th International Conference
on Software Engineering, ser. ICSE ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 439–448. [Online]. Available:
http://dl.acm.org/citation.cfm?id=998675.999448

[21] S. G. Powell, K. R. Baker, and B. Lawson, “A critical review
of the literature on spreadsheet errors,” Decis. Support Syst.,
vol. 46, no. 1, pp. 128–138, Dec. 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.dss.2008.06.001

[22] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari,
and J. Torrellas, “Varius: A model of process variation and resulting
timing errors for microarchitects,” IEEE Transactions on Semiconductor
Manufacturing, vol. 21, no. 1, pp. 3–13, Feb 2008.

[23] X. Liang and D. Brooks, “Mitigating the impact of process variations
on processor register files and execution units,” in 2006 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’06),
Dec 2006, pp. 504–514.

[24] A. Rahimi, L. Benini, and R. K. Gupta, “Variability mitigation in
nanometer cmos integrated systems: A survey of techniques from circuits
to software,” Proceedings of the IEEE, vol. 104, no. 7, pp. 1410–1448,
July 2016.

[25] SymPy Development Team, SymPy: Python library for symbolic
mathematics, 2016. [Online]. Available: http://www.sympy.org

[26] W. R. Inc., “Mathematica, Version 11.2,” champaign, IL, 2017.
[27] G. M. Amdahl, “Validity of the single processor approach to achieving

large scale computing capabilities,” in Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, ser. AFIPS ’67 (Spring).
New York, NY, USA: ACM, 1967, pp. 483–485. [Online]. Available:
http://doi.acm.org/10.1145/1465482.1465560

[28] X.-H. Sun and Y. Chen, “Reevaluating amdahl’s law in the multicore
era,” J. Parallel Distrib. Comput., vol. 70, no. 2, pp. 183–188, Feb.
2010. [Online]. Available: http://dx.doi.org/10.1016/j.jpdc.2009.05.002

[29] L. Yavits, A. Morad, and R. Ginosar, “The effect of communication
and synchronization on amdahl’s law in multicore systems,” Parallel
Computing, vol. 40, no. 1, pp. 1 – 16, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819113001324

[30] S. Eyerman and L. Eeckhout, “Modeling critical sections in amdahl’s
law and its implications for multicore design,” in Proceedings of the
37th Annual International Symposium on Computer Architecture, ser.
ISCA ’10. New York, NY, USA: ACM, 2010, pp. 362–370. [Online].
Available: http://doi.acm.org/10.1145/1815961.1816011

[31] D. H. Woo, D. H. Woo, D. H. Woo, D. H. Woo, H. H. S. Lee, H. H. S.
Lee, H. H. S. Lee, and H. H. S. Lee, “Extending amdahl’s law for
energy-efficient computing in the many-core era,” Computer, vol. 41,
no. 12, pp. 24–31, Dec 2008.

[32] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-chip
heterogeneous computing: Does the future include custom logic, fpgas,
and gpgpus?” in Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’43.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 225–236.
[Online]. Available: http://dx.doi.org/10.1109/MICRO.2010.36

[33] W. J. Song, S. Mukhopadhyay, and S. Yalamanchili, “Amdahls law
for lifetime reliability scaling in heterogeneous multicore processors,”
in The 2016 International Symposium on High-Performance Computer
Architecture (HPCA-22), March 2016.

[34] S. Hong and H. Kim, “An analytical model for a gpu architecture with
memory-level and thread-level parallelism awareness,” in Proceedings
of the 36th Annual International Symposium on Computer Architecture,
ser. ISCA ’09. New York, NY, USA: ACM, 2009, pp. 152–163.
[Online]. Available: http://doi.acm.org/10.1145/1555754.1555775

[35] ——, “An integrated gpu power and performance model,” in
Proceedings of the 37th Annual International Symposium on Computer



Architecture, ser. ISCA ’10. New York, NY, USA: ACM, 2010, pp. 280–
289. [Online]. Available: http://doi.acm.org/10.1145/1815961.1815998

[36] S. Song, C. Su, B. Rountree, and K. W. Cameron, “A simplified
and accurate model of power-performance efficiency on emergent gpu
architectures,” in 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing, May 2013, pp. 673–686.

[37] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor
model,” in Proceedings of the 31st Annual International Symposium
on Computer Architecture, ser. ISCA ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 338–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=998680.1006729

[38] X. E. Chen and T. M. Aamodt, “Hybrid analytical modeling of pending
cache hits, data prefetching, and mshrs,” in 2008 41st IEEE/ACM
International Symposium on Microarchitecture, Nov 2008, pp. 59–70.

[39] S. Eyerman, K. Hoste, and L. Eeckhout, “Mechanistic-empirical proces-
sor performance modeling for constructing cpi stacks on real hardware,”
in (IEEE ISPASS) IEEE International Symposium on Performance Anal-
ysis of Systems and Software, April 2011, pp. 216–226.

[40] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in Proceedings of
27th International Symposium on Computer Architecture (IEEE Cat.
No.RS00201), June 2000, pp. 83–94.

[41] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “Mcpat: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in 2009
42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Dec 2009, pp. 469–480.

[42] A. A. Nair, S. Eyerman, J. Chen, L. K. John, and L. Eeckhout,
“Mechanistic modeling of architectural vulnerability factor,” ACM
Trans. Comput. Syst., vol. 32, no. 4, pp. 11:1–11:32, Jan. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2669364

[43] A. Hartstein and T. R. Puzak, “The optimum pipeline depth for
a microprocessor,” in Proceedings of the 29th Annual International
Symposium on Computer Architecture, ser. ISCA ’02. Washington,
DC, USA: IEEE Computer Society, 2002, pp. 7–13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=545215.545217

[44] B. C. Lee and D. M. Brooks, “Accurate and efficient regression
modeling for microarchitectural performance and power prediction,”
in Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS XII. New York, NY, USA: ACM, 2006, pp. 185–194.
[Online]. Available: http://doi.acm.org/10.1145/1168857.1168881

[45] B. Lee and D. Brooks, “Statistically rigorous regression modeling for
the microprocessor design space,” in ISCA-33: Workshop on Modeling,
Benchmarking, and Simulation, 2006.
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Abstract

As autonomous driving and augmented reality evolve, a
practical concern is data privacy. In particular, these ap-
plications rely on localization based on user images. The
widely adopted technology uses local feature descriptors,
which are derived from the images and it was long thought
that they could not be reverted back. However, recent work
has demonstrated that under certain conditions reverse en-
gineering attacks are possible and allow an adversary to
reconstruct RGB images. This poses a potential risk to user
privacy. We take this a step further and model potential
adversaries using a privacy threat model. Subsequently, we
show a reverse engineering attack on sparse feature maps
and analyze the vulnerability of popular descriptors includ-
ing FREAK, SIFT and SOSNet. Finally, we evaluate poten-
tial mitigation techniques that select a subset of descriptors
to carefully balance privacy risk while preserving image
matching accuracy; our results show that similar accuracy
can be obtained when revealing less information.

1. Introduction
Privacy and security of user data has quickly become an

important concern and a design consideration when engi-
neering autonomous driving and augmented reality systems.
In order to support machine perception stacks, these sys-
tems require always-on information capture. Most of these
use-cases rely directly or indirectly on the data that orig-
inates from the user, i.e., RGB, inertial, depth, and other
sensor values. Data assets are potentially rich in private
information, but due to the compute power limitations on
the device, they must be sent to a service provider to enable
services such as localization, and virtual content. As a result,
there is understandable concern that any data assets shared
with a cloud service provider, no matter how well-trusted,
can potentially be abused [5]. To enable augmented reality
in practice, beyond the application functionality, privacy-
preserving techniques are thus an important consideration.

(a) (b)

(c) (d)
Figure 1: Reverse Engineering Attack and Mitigations.
(a) Original image. Object detections are marked with or-
ange bounding boxes. (b) Image reconstruction from 1, 000
SIFT descriptors using our reverse engineering attack. The
reconstruction gives sufficient fidelity to preserve detectable
semantic information. By (c) reducing the number of fea-
tures or (d) selective suppression around objects, we can
reduce the efficacy of the attack and improve privacy.

In this work, we focus on localization as a fundamental
component of augmented reality. Localization relies on
visual data assets to make a prediction of the location and
pose of the user; in particular most established algorithms
rely on local feature descriptors. Since these descriptors
contain only derived information, they were long thought to
be secure.

Unfortunately, recent literature shows that descriptors can
be reverse engineered surprisingly well. We show an exam-
ple in Figure 1. In general, a reverse engineering attack is
the process by which an artificial object is deconstructed to
reveal its designs, architecture, code or to extract knowledge
from the object [11]. For feature descriptors, a reverse en-
gineering attack attempts to reconstruct the original RGB
image that was used to derive the feature descriptors. The fi-
delity to which the original RGB image can be reconstructed

1
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roughly correlates to the severity of the potential risk to
privacy. Prior work [51, 6, 9, 29] has shown that feature de-
scriptors are potentially susceptible to such an attack under
a range of conditions and configurations. However, there
is limited work on quantitatively analyzing privacy implica-
tions as well as evaluating potential defenses against such
reverse engineering attacks, which our work will explore.

To scope the problem, we first outline a privacy threat
model [8] to contextualize the practicality and data assets
available to a descriptor reverse-engineering attack. Using
these assets, we show potential reverse engineering attacks
and quantify the information leakage to evaluate the pri-
vacy implications. We then propose mitigation techniques
inspired by best practices in privacy and security [53]. In par-
ticular, we propose two mitigation techniques: (1) reducing
the number of features shared and (2) selective suppression
of features around potentially sensitive objects. We show
that these techniques can mitigate the potency of reverse en-
gineering attacks on feature descriptors to improve privacy
protections on user data. In summary, we make the following
contributions:

1. We present a privacy threat model for a reverse en-
gineering attack to narrow down the privacy-critical
information and scope the setup for a practical attack.

2. We demonstrate a reverse engineering attack to recon-
struct RGB images from sparse feature descriptors such
as FREAK [2], SIFT [22] and SOSNet [45], and quan-
titatively analyze the privacy implications. In contrast
to previous work [29, 9], our approach does not take
additional information such as sparse RGB, depth, ori-
entation, or scale as input.

3. We present two mitigation techniques to improve pri-
vacy by reducing the number of keypoints shared for
localization. We show that there is a trade-off between
enhanced privacy (less fidelity of reconstruction) and
the utility (localization accuracy). We also show that
which keypoints are shared matters for privacy.

2. Related Work
The concept of reverse engineering local features has

evolved over recent years as local descriptors play an in-
creasingly important role. Prior work focused primarily on
better understanding the image features. Only recently have
there been proposals towards leveraging this line of research
to understand the privacy implications. Work towards discov-
ering vulnerabilities and mitigating against attacks remains
an emerging area of research.

2.1. Recovering Images from Feature Vectors

Reconstruction from Sparse Local Features. Weinza-
epfel et al. [51] demonstrated the feasibility of reconstruct-

ing the input image, given SIFT [22] descriptors and their
keypoint locations, by finding and stitching the nearest neigh-
bors in a database of patches. d’Angelo et al. [6] cast the re-
construction problem as regularized deconvolution problem
to recover the image content from binary descriptors, such
as FREAK [2] and ORB [35], and their keypoint locations.
Kato and Harada [16] showed that it is possible to recover
some of the structures of the original image from an aggre-
gation of sparse local descriptors in bag-of-words (BoW)
representation, even without keypoint locations. While the
quality of reconstructed images from the above methods
is far from the original images, they allow clear interpre-
tations of the semantic image content. In this paper, we
demonstrate that reverse engineering attacks using CNNs
reveal much more image details and quantitatively analyse
privacy implications for floating-point [22], binary [2] and
machine-learned descriptors [45].
Reconstruction from Dense Feature Maps. Vondrick et
al. [49] perform a visualization of HoG [55] features in
order to understand its gaps for recognition tasks. To under-
stand what information is captured in CNNs, Mahendran and
Vedaldi [23] showed the inversions of CNN feature maps
as well as a differentiable version of DenseSIFT [21] and
HoG [55] descriptors using gradient descent. Dosovitskiy
and Brox [9] took an alternative approach to directly model
the inverse of feature extraction for HoG [55], LBP [27] and
AlexNet [18] using CNNs, and qualitatively show better re-
construction results than the gradient descent approach [23].
They also show reconstructions from SIFT [22] features us-
ing descriptor, keypoint, scale, and orientation information.
All the above approaches differ from ours in that we perform
the reconstruction from descriptors and keypoints only.
Modern Reverse Engineering Attacks. In the context of
3D point clouds and the AR/VR applications built on top of
them, a common formulation of the reverse engineering at-
tack is to synthesize scene views given the 3D reconstruction
information. Recent work by Pittaluga et al. [29] showed that
it is possible to reconstruct a scene from an arbitrary view-
point from SfM models using the projected keypoints, sparse
RGB values, depth, and descriptors. Our work extends this
approach by considering only the modalities available to an
attacker as input, which are keypoints and descriptors.

2.2. Defences and Mitigations

Mitigations for Attacks on Sparse Local Features. For
reverse engineering attacks on local features, one notable
recent work [42, 13, 41] proposes using line-based features
to obfuscate the precise location of keypoints in the scene
to make the reconstruction difficult. The key idea is to lift
every keypoint location to a line with a random direction,
but passing through the original 2D [13] or 3D keypoints
[42]. Since the feature location can be anywhere on a line,
this alleviates privacy implications in the standard mapping
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and localization process. Shibuya et al. [41] later extended
this approach for SLAM. Similarly, Dusmanu et al. [10]
represent a keypoint location as an affine subspace passing
through the original point, as well as augmenting the sub-
space with adversarial feature samples, which makes it more
difficult for an adversary to recover original image content.
Mitigations on Raw Images. Apart from local features,
other works try to alleviate the privacy concern around shar-
ing raw images by perturbing the images [33, 19, 4, 36, 31,
52, 28, 50]. One way of achieving this is to mask out or
replace the parts of images (e.g., faces) that contain private
information [48, 33, 19]. Another stream of work focuses
on encoding schemes or degrading images to prevent recog-
nition of private image content [4, 36, 31, 52, 28, 50]. A
few cryptographic methods were proposed to encrypt visual
content in a homomorphic way on local devices [12, 37, 54],
which allows computing on encrypted data without decrypt-
ing. However, such methods are computationally expensive
and it is not clear how to apply them to complex applications
such as localization.

2.3. Relationship to Adversarial Attacks on Neural
Networks

Recent work has shown that it is possible to trick deep
learning models with adversarial inputs to induce incorrect
outputs [44, 26, 3, 1]. For example, an adversarial attack
may engineer a perceptually indistinguishable input image
to trick a deep learning model into emitting an incorrect
classification result.

Conceptually, these adversarial attacks are similar to the
defense or mitigation strategies that we will propose, since
state-of-the-art reverse engineering attacks on descriptors
rely on deep learning models. Our mitigation techniques
modify inputs in a way to prevent the deep learning model
used in the attack from accomplishing its objective — reverse
engineering the image. However, unlike prior work in this
space, our work lifts the insight that inputs can be modified
to induce incorrect outputs and leverages it to defend against
reverse engineering attacks to preserve privacy instead of as
an attack vector.

3. System and Threat Definition
In this section, we first define privacy and utility as well

as their trade-offs. We also describe our privacy threat model,
which defines assumptions on adversary behavior and the
conditions for a practical reverse engineering attack.

3.1. Definitions

Privacy. The LINDDUN privacy threat modeling method-
ology, one particular methodology in academic discussions,
looks at privacy through the following properties [8]: link-
ability, identifiability, non-repudiation, detectability, infor-
mation disclosure, content unawareness, and policy. The

idea behind LINDDUN is that whenever users share infor-
mation, one or more of these privacy properties may be at
risk. That is relied on for the notion that minimizing the
amount of shared information improves privacy. However,
precisely quantifying the impact on privacy is application-
specific and can be implemented as a continuum, modulating
the amount of information to be shared as required. In this
work, references to privacy risk and/or threat applies specifi-
cally to reidentification risk that comes as a direct result of
the reverse engineering attack we describe and evaluate the
trade-offs with in Section 5.2)
Utility. Utility captures the accuracy (or performance) of an
application or how useful a data asset is to an application.
Applications may have multiple utility functions to present a
well-rounded understanding of the operation. Utility gener-
ally presents a trade-off with privacy as performance tends
to improve with dataset size, e.g., ML training. In our case,
we use feature matching recall as a proxy for localization
accuracy (see Section 5.2).
Privacy-Utility Trade-Off. Applying privacy-preserving
techniques can adversely affect utility. The ideal objective of
the system is to have both high utility and preserve privacy,
but in practice there is a fundamental trade-off between the
amount of information that one is willing to share and the
utility one receives from sharing it. In our case, this means
there is a trade-off between the desired localization accuracy
(utility) and the images from the user that may potentially be
revealed (privacy). The descriptor-based localization service
offers a balance between privacy and utility; features sent to
the server are still useful to the application pipeline but do
not directly leak the rich information content of RGB images
which contains private information.

In certain cases where the definitions of utility and pri-
vacy are simple, this trade-off can be formalized and rea-
soned about analytically (e.g. k-anonymity [43]). In larger
systems this is not possible and we must actively play the
roles of attacker and defender to model possible attacks
and understand the risks to user privacy. In computer
security and privacy, this is the role of a privacy threat
model [39, 25, 46, 47, 24, 38, 8].

3.2. Privacy Threat Model

Building a privacy threat model is application specific.
For our localization use-case, the closest is the LINDDUN
”hard privacy” threat model [8] where the objective is to
share as little information as possible to a potential adversary.
At a high level, LINDDUN proposes building a dataflow
diagram of a system, data assets, adversary, and potential
attack vectors. These are then used to audit potential threats
that may impact privacy properties. In our work, we focus
on identifiability, detectability, and information disclosure,
which are the most relevant to our reverse engineering attack
on RGB images. Identifiability refers to whether an adver-
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Figure 2: Overview of a typical localization system and our privacy threat model. A client derives descriptors from
RGB images and shares only the descriptors with a service provider. The service provider is honest and faithfully executes
relocalization by matching query descriptors against those of a map. The service provider is also curious and may attempt to
derive insight about the user. This sets up a potential reverse engineering attack. For such a system, our mitigation strategy
must lie at the interface between the client device and the honest-but-curious service provider. Minimizing information shared
at this interface reduces the amount of sensitive information that reaches the adversary.

sary can identify items of interest. Detectability refers to
whether an adversary can detect whether items exist or not.
Information disclosure refers to whether information about
the user is disclosed to an adversary who should not have
access to it. An adversary with an RGB image can observe
information about each of these properties which poses a
risk to privacy.
System Definition and Sensitive Data Assets. Figure 2
shows the relevant components of our privacy threat model.
Our system follows a client-server architecture to process
localization requests. For localization, there are two primary
data assets: (1) RGB images and (2) feature descriptors.
The client takes RGB images and derives feature descriptors
which are shared with the server to query the user’s location
and pose from a map. We focus on protecting the RGB im-
ages as these are data assets which could be used to identify
items of interest. Descriptors are perceived as more private
and more acceptable to share because they do not directly
leak RGB information. However in Section 5.3, we will
show that indirectly this is not true.
Adversary Definition and Potential Attacks. Our privacy
threat model considers the service provider as an adversary
(Figure 2) that is honest-but-curious, which is canonical in
the security literature [15]. The honest-but-curious adversary
is a legitimate participant in the system and executes the
agreed upon application or service faithfully (as opposed to
outright malicious behavior). But, while fulfilling the service,
the adversary is curious and may use available data to learn
information about the client. In our case, the adversary
poses a risk to the client’s privacy by reverse engineering
the RGB images from feature descriptors. This is possible
because the adversary has access to similar data – specifically

feature descriptors and source RGB images – and large scale
compute resources. Together, this means an adversary is
capable of training deep-learning models (such as a reverse
engineering model) to analyze data in a reasonable amount
of time.

The goal of this paper is to understand how a client’s
protection against an honest-but-curious adversary capable
of training deep learning models to reverse engineer RGB
images from feature descriptors could be enhanced.

4. Reverse Engineering Attack
This section defines the convolutional neural network

models we use to craft our reverse engineering attack. As
shown in Figure 2, this model takes sparse local features
(keypoints and descriptors) as input and estimates the origi-
nal RGB image.

4.1. Model Architecture

Given a user image I(i, j) ∈ R3 and a derived sparse
feature map FI,M (i, j) ∈ RC containing C-dimensional
local descriptors from the image I using a feature extractor
M , we seek to reconstruct an image Î(i, j) ∈ R3 from
FI,M . The sparse feature map is assembled by starting with
zero vectors and placing extracted descriptors at keypoint
locations i, j. Our reverse engineering attack relies on a
deep convolutional generator-discriminator architecture that
is trained for each specific feature extraction methodM . The
generator GM produces the reconstructed image:

Î = GM (FI,M )

4
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and follows a single 2-dimensional U-Net topology [34] with
5 encoding and 5 decoding layers as well as skip connec-
tions with convolutions. The discriminator DM is a 6 layer
convolutional network operating on top of GM [30]. Please
see the supplemental material for details. In order to adhere
to our privacy threat model and in contrast to prior work by
Pittaluga et al. [29], we do not use depth or RGB inputs and
subsequently also do not make use of a VisibNet.

4.2. Loss Functions

We use the following loss functions to train the recon-
struction network:
MAE. The mean absolute error (MAE) is the pixelwise L1
distance between the reconstructed and ground truth RGB
images:

Lmae =
∑
i,j

||̂I(i, j)− I(i, j)||1 . (1)

L2 Perceptual Loss. The L2 perceptual loss is measured
as:

Lperc =
∑
i,j

3∑
k=1

||φk (̂I(i, j))− φk(I(i, j))||22 , (2)

with φk being the outputs of a pre-trained and fixed VGG16
ImageNet model [7]. φk are taken after the ReLU layer k
with k ∈ {2, 9, 16}.
BCE. For the generator-discriminator combination, we use
the binary cross-entropy (BCE) loss defined as:

Lbce =
∑
i,j

log(DM (̂I(i, j))) + log(1−DM (I(i, j))) .

(3)

Finally, we optimize the losses together:

LG = Lmae + αLperc + βLbce , (4)

with α and β as scaling factors.

5. Evaluation
5.1. Experimental Setup

Sparse Local Features. For the feature extraction method
M from Section 4.1, we use SIFT [22] (C = 128),
FREAK [2] (C = 64), and SOSNet [45] descriptors (C =
128) as representatives of traditional and machine-learned
variants. Keypoint locations for FREAK and SOSNet were
detected using Harris corner detection [14]. For reconstruc-
tion, we use the SIFT detector for SIFT descriptors as in [29];
however, for image matching we use Harris corners for SIFT
descriptors because we found the SIFT detector performed
poorly in this setting.

Training and Evaluation Data. We train our networks on
50, 000 images and their extracted sparse local features from
the training partition of the MegaDepth dataset [20]. For
testing the reverse engineering attack, we sampled 9, 800
images from the MegaDepth test set that contain objects as
candidates for potential private data.
Network Training. A different reverse engineering model
M is trained for 400 epochs for each descriptor type. The
learning rate is initialized to 0.001 and 0.0001 for the gener-
ator and discriminator networks respectively. Learning rates
are adjusted using the Adam optimizer [17].

5.2. Measuring Privacy and Utility

Measuring Privacy with SSIM. Our first metric for measur-
ing privacy is structural similarity (SSIM), which measures
the perceptual similarity between images. In our case, we
use SSIM to evaluate how much visual information the re-
verse engineering attack can recover by comparing against
the original image. Therefore, SSIM provides a way to mea-
sure identifiability. We note that the SSIM measures to what
extent the whole image may be recovered, which includes
private and public information (e.g. people and buildings
respectively); the public information is also available to the
service provider when building the map. However, measur-
ing how well the whole image can be reconstructed includes
the reconstruction quality of private regions. SSIM can fur-
ther serve as a proxy to estimate how well other tasks such as
object detection, landmark recognition, and optical character
recognition may perform on the reverse-engineered image.
Measuring Privacy by Object Detection. We use an object
detector (YOLO v3 [32], with 80 classes) to measure how
much semantic information can be inferred from the reverse-
engineered images. We compare object detection results on
both the original and the reconstructed images. If an object’s
bounding box in the original image has at least 50% overlap
with that of the reconstructed image of the same class label,
we consider them as a match. The more correspondence
between objects in the original and the reconstructed image,
the higher the risk to privacy.
Measuring Utility. To assess utility of local features when
applying our mitigation strategies, we define an image match-
ing task as a proxy for localization and investigate how the
feature matching between two images deteriorates as we in-
crease the privacy. Specifically, we generate corresponding
image pairs from the 53 landmarks of the test split of the
MegaDepth [20] dataset. For each landmark, we sample
50 pairs of images that have at least 20 covisible 3D points
determined from a reference map built with COLMAP [40],
resulting in 2, 650 image pairs. For each corresponding pair
of images, we perform local correspondence matching using
input features, and count the number of pairs with at least
20 inlier matches which we deem as successful. We refer
to the proportion of image pairs that have been successfully
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Figure 3: Reverse Engineering Attack Results. From top to bottom: ground truth and reconstructions from a max. of 1, 000
sparse SIFT, FREAK and SOSNet features. One can observe that reconstruction from only sparse local features reveals the
original image information extremely well. Note that the images show landmarks that were not included in the training data.

matched as our matching recall, which we use as our utility
measure.

5.3. Reverse Engineering Attack

We first evaluate to what extent the reverse-engineering
attack from Section 4 poses a risk to privacy. Examples of
the reconstructions are shown in Figure 3 and the privacy
metrics of the reverse-engineered images are given in Ta-
ble 1. Reconstructions using FREAK [2] descriptors yield
substantially poorer reconstruction quality and semantic con-
tent than SIFT [22] and SOSNet [45]. Despite differences in

Descriptor SSIM Detected Objects
SIFT [22] 0.675 32.58%
FREAK [2] 0.511 19.32%
SOSNet [45] 0.616 41.26%

Table 1: Privacy metrics of reverse-engineered images
using 1, 000 keypoints. The amount of detected objects
using YOLO v3 [32] is measured on the reverse-engineered
images relative the amount detected on the original images.
FREAK descriptors reveal less information than SIFT and
SOSNet.

feature extraction techniques and descriptor sizes, all three
descriptors are susceptible to the attack and yield reconstruc-
tions comparable to prior work [29] (please see supplemental
material for detailed comparison to prior work), but notably
without RGB or depth information as input. At a higher
level, the results show that the reverse engineering attack can
introduce a reidentification risk of RGB image content. The
results from Table 1 also show that the reverse-engineered
images still allow an adversary to detect and identify some
objects that were present in the original images.

5.4. Mitigation by Reduction of Features

Following Section 3.2, to improve privacy, our objective
is to minimize the information shared by the client. To this
end, we investigate how reducing the number of features
increases privacy at the expense of utility.

For each descriptor type, we retain a maximum of N top-
scoring keypoints based on the detector response and vary
N from 1000 to 100. For each value of N we then evaluate
how well our reverse-engineering models perform. Quali-
tative results are given in Figure 4. We show the average
privacy (measured by 1−SSIM) of the reconstructed images
vs. the number of features in Figure 5a. The data shows the
degradation in SSIM of the reconstructed images accelerates
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Figure 4: Reverse engineering ablation study of reducing keypoints. SIFT, FREAK and SOSNet reverse engineering
results using 1, 000, 800, 400, 200, and 100 keypoints respectively, annotated in red. Reducing keypoints reduces the potency
of the reverse engineering attack. Regions with higher densities of keypoints have better reconstruction quality.
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Figure 5: Utility and Privacy Trade-Off when Varying the Number of Features. Privacy increases when reducing the
number of features where FREAK gives the best results. For utility, FREAK and SIFT gives the best results. SIFT gives the
best overall trade-off.

as more keypoints are removed. For less than 300 features,
SIFT gives better results than SOSNet. FREAK outperforms
SIFT and SOSNet, and yields the best results in terms of
privacy.

However, despite strong privacy results, FREAK trades-
off utility. In Figure 5b, we show how the utility changes.
Here, FREAK gives the lowest utility, indicating that
FREAK descriptors overall provide less useful information
than SOSNet and SIFT. Interestingly, for SOSNet and SIFT
the number of keypoints can be reduced to 200 by sacrificing
only 2% performance. The trade-off between utility and

privacy is shown in Figure 5c. Overall, we find that SIFT
yields the best privacy-utility trade-off among the evaluated
descriptor configurations on the Megadepth dataset. We note
that these results do not preclude the possibility that other
descriptor configurations (i.e., in terms of dimensionality, tar-
get dataset, and type) may achieve better results. Ultimately
the ideal descriptor chosen will depend on the precise pri-
vacy and utility requirements necessitated by the localization
service.
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(a) Original Image
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(c)

Figure 6: Reverse Engineering Results after Selective Feature Supression. (a) Original image with object detection results
(people). (b) Reverse-engineered images without feature suppression (with max. number of keypoints set to 1000), followed by
object detection. (c) Reverse-engineered images using feature suppression, followed by object detection. As visible, all objects
that can be detected by the YOLOv3 object detector without the suppression are successfully removed with the suppression.

5.5. Selective Suppression of Features

Globally reducing image features can reduce the potency
of the reconstruction attack, but at the same time it reduces
the matching accuracy. In this section, we investigate to what
extent an object detector can help implement a more selective
approach. We identify and mark the sensitive regions in the
images using the bounding boxes produced by the YOLO
v3 [32] object detector. Based on the bounding boxes, we
then suppress any features in these regions. Finally, we apply
our reverse-engineering attack and measure the detectable
semantic information content in the images before and after
reverse engineering (Table 2).

Figure 6 shows a qualitative example of how selective
feature suppression effectively defeats the object detector;
the people detected in the original image do not appear nor

Privacy Utility
(Object Recall) (Matching Recall)

Supression No Yes No Yes
SIFT [22] 20% 2.21% 100% 88%

FREAK [2] 11% 1.29% 34% 28%
SOSNet [45] 28% 5.21% 100% 88%

Table 2: Privacy-Utility Trade-Off for Selective Feature
Suppression. Object recall shows how many objects can
be detected from the reverse engineered images compared
to the original images without and with suppression (note
that lower is better). Matching recall shows how many im-
ages can be successfully matched without and with selective
feature suppression. SIFT gives the best overall trade-off.

are identifiable by the object detector in the reconstructed
images. These results confirm our intuition that selective
suppression can effectively preserve the privacy around a
potentially sensitive region of interest (in our case semantic
content of people in the image). Note that the quality of
the overall image outside of the marked sensitive regions
remains largely unaffected. Finally, the results show that
features of private objects should not be shared in order to
mitigate privacy risks posed by reverse engineering attacks.

Results for the privacy-utility trade-off of the suppression
are given in Table 2. Under the evaluated experimental
conditions, SIFT and SOSNet give better trade-offs than
FREAK; these trends are consistent with the results from
Section 5.4. Notably for SIFT the utility drops slightly, while
the detected objects are almost eliminated.

6. Conclusion
Our work has formulated a privacy threat model to scope

the threats to descriptor-based localization. In contrast to
prior work, for the first time, we have shown a reverse en-
gineering attack that operates in the real-world scenario,
where only sparse local features are available to an honest-
but-curious adversary. We found that our reverse engineering
attack could reconstruct the original image with surprisingly
good quality. We then investigated two mitigation tech-
niques and showed a trade-off between privacy and utility
(measured by feature matching). We found that using an
object detector to suppress objects slightly reduces matching
accuracy (as a proxy for localization accuracy) but gives bet-
ter privacy results (fewer reidentifiable objects). Finally, our
analysis has shown that, among the descriptors and we evalu-
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ate, the best overall privacy-utility trade-off can be achieved
with SIFT, when compared to FREAK and SOSNet. Privacy
(defined as reidentification risk through reverse engineering
attacks as specifically described in this paper) may be pre-
served with the mitigation techniques described in this paper.
Looking forward, our work provides initial experiments on
some mitigation techniques the community may consider
to further the privacy-aware descriptor-based applications
research.
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