
Agile Hardware
Development and
Instrumentation
With PyRTL

Deeksha Dangwal, Georgios Tzimpragos,

and Timothy Sherwood

University of California, Santa Barbara

Abstract—Domain-specific architectures have emerged as a promising solution to meet

growing technology demandsbutwith this comesanurgent need to improvehardware

methodologieswhich often have long design cycles, rely on closed sourceandexpensive

tools, and have high nonrecurring engineering costs. In this article,wedescribe howour

work developingPyRTL, an open sourcePython-basedHardwareDevelopment Toolkit, has

proven to be a powerful agile hardwaredevelopment andanalysis toolwith the features to

improve currentmethodologies.Wedescribe how this toolkit-driven approachencourages

hardware reuse usingmodern object-oriented programming features andpresent an

examination of its custom intermediate representation for hardwaredebugging, analysis,

and instrumentation. This approachhas provenuseful in supporting fast design iteration in

a variety of domains including cryptography andmachine learning.

& THE RECENT GROWTH in specialized hardware

and accelerators as a means to improve perfor-

mance and energy efficiency has created a devel-

opment flow mismatch between the rapid cycles

expected from software and the more top-down

waterfall style of development dominating

traditional hardware design. If we are to support

agile computational development in this mixed

hardware/software world, we will need the ability

to prototype, test, and characterize new designs

in a timely manner. Of special note is reconfigura-

ble hardware, in the form of either FPGAs or

coarse grain reconfigurable arrays, which further

open the door to agile development by allowing

early roll-out designs to be improved and updated

incrementally. However, we observe that most

modern agile development models rely heavily on

Digital Object Identifier 10.1109/MM.2020.2997704

Date of publication 26 May 2020; date of current version

30 June 2020.

Theme Article: Agile and Open-Source HardwareTheme Article: Agile and Open-Source Hardware

76
0272-1732 � 2020 IEEE Published by the IEEE Computer Society IEEE Micro

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 26,2021 at 02:40:27 UTC from IEEE Xplore. Restrictions apply.

a rich ecosystem of tools, libraries, and services

that can be customized and deeply integrated in

the process. That ecosystem, when integrated

well, enables continuous improvement in the

entire process of development. Critically, for both

hardware and software, this includes not only

design, but also test, analysis, evaluation, and

how it integrates with existing development tools.

Rather than invent new languages and practices

that mirror those in agile development, an impor-

tant goal of PyRTL is to act as a bridge between

these traditionally distinct worlds.

PyRTL,1 a Python Hardware Design Toolkit,

provides a pathway to concisely and precisely

design hardware structures. PyRTL’s overarching

goals are simplicity, usability, clarity, and extensi-

bility. With this in mind, the toolkit is developed

around a small and well-defined internal core

structure which intentionally restricts users to a

set of reasonable digital design practices that

always lead to a synthesizable design. While we

have extensively used it over the past six years in

the development of numerous processors and

accelerators, PyRTL does not claim to solve every

hardware development problem out of the box.

Rather the core of PyRTL provides a minimal set

of hardware primitives, expressed as a Python

class, which can then be extendedwith other clas-

ses and libraries as appropriate. PyRTL enables

the use of higher order functions, lambdas, list

comprehension (see Figure 1), recursion (see

Figure 2), and is supported by Python’s rich eco-

system of libraries. For example, we have previ-

ously integrated our various PyRTL designs

generated with Python packages such as Tensor-

Flow, PyTorch, Scikit-Learn, Numpy, Hypothesis

testing, Z3 SMT solver, and more. This, in turn,

allows for a property of a hardware design to be

checked through with a solver, an optimization to

be performed by exploiting existing libraries, or a

set of parameters to be shared between a software

model andhardware design easily andwithout the

need for new stand-alone tools or even special

CAD skills. As we will discuss later, we have sup-

ported some of the more common patterns, such

as a “hardware transformation” and complimen-

tary libraries to PyRTL to even further lower the

barrier to experimentation and tooling.

The core philosophy of PyRTL is elaboration-

through-execution; i.e., to generate hardware as

PyRTL code is being executed, an approach it

shares with the hardware construction languages

Lava2 and Chisel.3 PyRTL does not infer hardware

from a restricted set of Python. Instead it main-

tains an internal map of core components and, as

the PyRTL code executes, it grows that map in the

way specified by the software. The python code is

in some sense a single “generator” for the hard-

ware, and software abstractions can be used to

build arbitrarily large and complex complete sys-

tems. Small generators (such a FIFOqueue genera-

tor function) can then be called by larger

generators (such as a Pipeline generator class).

Because all of these generators ultimately call

PyRTL core elements under the hood (visible to

the designer), the hardware designed is always

explainable and synthesizable.

PyRTL comes with “batteries included” and

students/designers can go from writing tests to

designing hardware blocks to visualizing wave-

forms without ever having to leave the Python

shell. A single “pip install” is all that is needed to

get going. PyRTL includes classes to support

design, simulation, debugging, visualization, syn-

thesis, testing, tracing, and instrumentation and

the goal is to allow for the quick design/test

cycles all in Python. Of course there are many

other hardware design tools one might wish to

bring into the mix and so all hardware described

in PyRTL, by nature of building around a small

and well-defined core, can be exported to either

synthesizable Verilog or FIRRTL – Chisel’s3

Figure 1. Use of hardware comprehension for

concise code to implement the data scrambling

operation, SubBytes and data unscrambling

operation, InverseMixColumns, in AES.

July/August 2020 77
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 26,2021 at 02:40:27 UTC from IEEE Xplore. Restrictions apply.

intermediate representation (IR). Testbenches

can be exported to Verilog and simulation res-

ults can be visualized with almost any standard

waveform viewing tool.

In this article, our goal is to describe our

experiences in using PyRTL in various

research projects and highlight the features

that make it especially suitable for agile devel-

opment. We first explain a typical PyRTL

workflow and then go through the core and IR

that make that possible. We present a number

of interesting examples where

PyRTL allows us to tightly inte-

grate the hardware design pro-

cess with software libraries and

evaluate resulting designs with

detailed analyses.

Of course, PyRTL draws on a

wealth of existing work in modern

hardware design DSLs. Chisel3

presents elaboration-through-exe-

cution in Scala and is a popular

and powerful hardware construc-

tion language used in many RISC-V

projects. MyHDL4 utilizes Python’s

decorators and generators while

maintaining syntax close to Veri-

log. PyMTL5 and Mamba6 enable

generation, verification, and simu-

lation of hardware at multiple lev-

els. Other similar projects built on

top of pure functional languages

are C�aSH7 and Lava.2

PYRTL FOR AGILE HARDWARE
DEVELOPMENT

With the rise of domain specific architectures,

there is more demand than ever for domain

experts to play a role in making informed algo-

rithm/hardware tradeoffs. In order to enable

hardware–software co-design, PyRTL presents

algorithm developers with flexibility, high-level

abstractions, and the support of well-loved soft-

ware libraries while still maintaining low-level

control of details of hardware design decisions.

In this section, we detail how we have mixed-in

code from popular python libraries, such as

PyTorch, Scikit-Learn, and Hypothesis, in our

accelerator hardware design flows.

PyRTL Workflow

To understand how this works, it is helpful to

understand what it even means to design hard-

ware in PyRTL. Getting started really is as simple

as typing pip install pyrtl in your terminal and

the python shell will suffice to go from design to

debugging, simulation, and synthesis. No other

libraries are required, although it does have

built in connections to other hardware frame-

works. For example, PyRTL can provide area and

timing estimates, either through internal estima-

tors or by making calls out to yosys.8 Consider

the toy example of building an

adder in PyRTL shown in Figure 2.

Once the functions for the full

adder and ripple-carry adder are

defined, they can be “wired” using

PyRTL’s wire types (see the

“PyRTL’S Core and Internals” sec-

tion) and simulated with the wave-

forms displayed on the terminal.

Because definition and simulation

all happen in the same execution,

it is easy for standard agile testing

approaches to apply. After initial

test-driven development the

designs can be exported automati-

cally to Verilog for use with tradi-

tional hardware workflows. While

PyRTL’s core and primitives (see

the “PyRTL’S Core and Internals”

section) can be used reuse hard-

ware beyond simply “modules,” PyRTL’s real

strength is being able to build hardware along-

side existing software libraries.

Developing and Verifying With Scikit-Learn

In the case of Race Trees,9 the authors use

PyRTL to develop a template-based methodol-

ogy, integrated with Scikit-Learn, that allows for

the design and evaluation of scalable temporal

accelerators for ensembles of decision trees

with little effort. The training of the model on

inputs and design of the accelerators happen in

the same Python code base. More specifically,

once the training process completes, the tool

uses a set of basic building blocks (e.g., paramet-

ric shift register and buffer, INHIBIT gate, etc.)

and glue logic to automatically generate synthe-

sizable RTL code out of a simple graph-based IR,

With the rise of domain

specific architectures,

there ismore demand

than ever for domain

experts to play a role in

making informed algo-

rithm/hardware trade-

offs. In order to enable

hardware–software co-

design, PyRTL presents

algorithm developers

with flexibility, high-level

abstractions, and the

support of well-loved

software libraries while

still maintaining low-

level control of details

of hardware

design decisions

Agile and Open-Source Hardware

78 IEEE Micro

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 26,2021 at 02:40:27 UTC from IEEE Xplore. Restrictions apply.

used by Scikit-Learn to store the trained model.

During functional verification, when the PyRTL

code for the given model is ready, the predict
function of the Scikit-Learn library can be used

as the golden reference to perform cross-check-

ing. To get the value of any of the hardware

design’s variables in the last simulation cycle

PyRTL’s inspect function can be used. More-

over, given that Scikit-Learn does not provide/

expect signals in the temporal domain, while the

developed hardware does, the authors use

Pythons generators to properly simulate input

stimuli. Existing ML evaluation and training

approaches can be directly employed in the

evaluation of hardware under test.

Prototyping ML Accelerators With PyTorch

In addition to providing useful input/output

evaluation of designs, PyRTL allows tools to be

integrated into the design process itself, for

example in the search for good parameteriza-

tions of hardware generation for ML accelera-

tors. One embodiment of this idea is

PyRTLMatrix10: a general purpose hardware

design pattern for instantiating and composing

common neural network primitives. The PyRTL-

Matrix class contains hardware implementations

of matrix operations that are at the heart of ML

applications. An instance of PyRTLMatrix repre-

sents a wire bus that directs data through vari-

ous logical computations representing matrix

operations. Consider Figure 3(a), which shows

the forward function (inference step) in both

PyTorch and PyRTLMatrix. Using the PyRTLMa-

trix class, we are able to design hardware that

looks as simple as high-level software. But, this

is not without tradeoffs. As a direct result of

using the PyRTLMatrix class, designers are dis-

tanced from the hardware implementation

which can lead to a loss of low-level understand-

ing. Low-level effects such as locally inferring bit-

width of operations repeatedly can lead to a

suboptimal designs because of the cumulative

growth the inferred bitwidth of wires. Using

block matrix multiplications, we end up with a

tree-like hardware structure and due to the cas-

cading of a series of element-wise vector adders,

there is an accumulation of wires which leads to

suboptimal design. To combat this and ensure a

consistent bitwidth throughout, the students

developing that code were able to wrap func-

tions with a custom Python decorator pattern as

shown in Figure 3(b).

Agile Testing With Hypothesis

Because the simulation of hardware can

happen right in the same execution as the

elaboration, like other elaboration through exe-

cution techniques, we can leverage agile testing

approaches. A specific advantage of PyRTL’s

direct implementation (rather than relying on

Figure 2. This example shows the entirely of code

required to implement and test a ripple carry adder.

Just as an example, a Python dictionary keeps track of

the wires carrying the sumbits as we iterate through.

The design is simulated on random values over full

span of inputs and a standard python assertion is

added to check for errors in the sum output.

July/August 2020 79
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 26,2021 at 02:40:27 UTC from IEEE Xplore. Restrictions apply.

higher level operations like decorators for core

operation) is that such integration is surprisingly

straightforward. As pointed out by others,5

Hypothesis is a python library for property-based

testing which generates datamatching a provided

specification of a property to test whether a guar-

antee holds. Importantly, the package seeks to

automatically simplify failure cases to the smallest

possible failing input—a feature that is incredibly

useful in hardware unit testing. While the earlier

ripple-carry example showed direct testing of

combinational logic, any nontrivial hardware has

state to manage. In Figure 4, you can see the

entirety of the code required to perform testing

on a hardware FIFO implementation. Omitted is

the function fifo, which defines the hardware

implementation of a fifo. The base function test_-
fifo takes a list of input signals and simulates

them, raising an assert when an error is found.

Hypothesis is simply instructed to find inputs of

the requested type that cause the assert to fail.

The resulting function test_fifo does exactly that.

With a couple extra lines of the code, not shown,

one can easily extract the minimum resulting fail-

ure. This approach actually found a subtle bug in

the original FIFO implementation that only hap-

pened when the queue was in its full state and a

certain combination of ready and valid arrive.

While many traces are generated as part of the

testing, the first trace generated by hypothesis

that caused a failing assertion was over 40 cycles

long. However, before returning this trace it was

able to reduce the example to a truly minimum

exciting input that immediately filled up the queue

and made the failing behavior trivial to identify.

Failing traces can be added to a regression so that

future changes do not change the behavior of

these identified corner cases. While more holistic

testing will always be required for hardware, the

test-driven style common in agile certainly makes

sense for even complex components.

PYRTL’S CORE AND INTERNALS
At the heart of PyRTL lies an IR that provides a

complete set of operations and structures for

the description and manipulation of hardware.

PyRTL’s IR supports a reasonable set of hardware

design practices but is not intended to allow full

arbitrary hardware to be specified. For example,

Figure 3. (a) Forward function implemented within

PyTorch and PyRTL. Using the PyRTLMatrix class,

the PyRTL code becomes simpler despite integrating

hardware designs. Through the application of

software design patterns, hardware design

languages become easier to understand.

(b) Decorator pattern is used to ensure a consistent

bitwidth among all items in the PyRTLMatrix.

Figure 4. Example of testing in PyRTL. The function

test_fifo is a simple unit test of a style familiar to

agile software developers, but in this case it is testing

a hardware implementation of a FIFO against the

python deque queue. The standard Python package

Hypothesis is used to automatically generate and

then minimize stateful failing inputs.

Agile and Open-Source Hardware

80 IEEE Micro

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 26,2021 at 02:40:27 UTC from IEEE Xplore. Restrictions apply.

recurrent hardware (where logic loops back on

itself without traversing a state element) and

semianalog designs (for example Z-state or wired-

or logic) are not allowed. While these structures

correspond to valid hardware, most modern high

performance design practices avoid them. By tak-

ing away some control in this way, we can replace

it with an intermediate structure that includes a

complete and understandable tool chain. Knowl-

edge of PyRTL’s IR is not strictly necessary for the

development of hardware design, but due to its

small size it is very handy for understanding hard-

ware design basics for beginners and for perform-

ing instrumentation and the translation of PyRTL

designs into other hardware description lan-

guages formore advanced users.

Blocks—Within PyRTL, sets of operations are

grouped in Blocks, each containing well-defined

inputs and outputs. Blocks represent the full

bipartite graph between logic elements (the primi-

tive operations) andWireVectors (which connect

these elements together). Blocks allow the design

ofmultiple circuits at once and enable grouping of

related hardware components together.

WireVectors—PyRTL supports five different

wire types: WireVector, Input, Output, Const,
and Register. Input and Output are special wires

that represent dynamic inputs and outputs in

the circuit, Const wires represent fixed values in

the circuit, and Registers store the value from

its source for the next cycle.

Memories—As memories are one of the most

critical elements of hardware designs and in

PyRTL they have their own construct to repre-

sent them. The memories are declared with a

size and bitwidth but are exposed to the user as

a collection of ports. Each array access or array

assignment corresponds to a specific read or

write port. PyRTL defaults to allowing 2-read 1-

write memories unless such memories are spe-

cifically declared to have a greater number.

One of the strongest aspects of PyRTL is the

aggressive and useful checks the system provides

in the hardware design process. Python is often

mischaracterized as “weakly typed” when in fact

it is “strongly typed” but just dynamically typed.

Thismeans at execution time every type in Python

is well defined. Because the elaboration of the

design happens at run time (i.e., when the gene-

rator runs) there is never any question about the

types used in generating hardware. This allows

us to build a robust set of elaboration-time checks

that identify errors such asmismatched bitwidths

or unexpected conversions. However, some prop-

erties, such as that all wires in the systemmust be

driven by a source, have to be checked postelabo-

ration. Properties such as this are checked by the

sanity_check method when the circuit is com-

pleted to ensure the workingmodel of hardware is

valid at all times. This further ensures that user-

defined transforms never violate the IR semantics

and never create invalid hardware states. For a

detailed explanation of PyRTL’s core and opera-

tions, please refer to our FPL2017 paper.1

While PyRTL is useful for rapid prototyping

and design tradeoff evaluation, some confidence

that resulting designs are not terribly inefficient is

important. To that end, we present results from

several microbenchmarks as compared on area,

delay, and gate counts for designs in both PyRTL

and Verilog in Table 1. For reference we also pres-

ent the number of lines of code (LOC) used.

Table 1. Synthesis results comparing area, delay, gate count, and LOC of PyRTL and Verilog designs.

Microbenchmark
PyRTL Verilog

Area Delay Gate count LOC Area Delay Gate count LOC

Wallace tree multiply 223.52 891.61 70 31 219.29 1129.04 70 115

Matrix multiply 4176.3 1647.66 1298 19 4176.3 1647.66 1298 33

Gray counter 101.38 348.98 30 8 48.36 276.45 15 27

Mealy machine 65.33 363.31 25 37 47.46 266.8 20 110

AES128 sub_bytes 30652.17 788.25 11114 31 76380.47 905.76 27916 607

AES128 mix_columns 2471.63 339.78 527 19 2213.68 339.78 472 42

July/August 2020 81
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 26,2021 at 02:40:27 UTC from IEEE Xplore. Restrictions apply.

We attempt to maintain an apples-to-apples

comparison between the hardware designs by

using yosys to synthesize both sets of designs and

find that, in most cases, PyRTL designs have com-

parable resulting delay and gate counts to Verilog.

HARDWARE INSTRUMENTATION
AND ANALYSIS

The move to more integrated hardware accel-

eration logic, both programmable and of fixed

functionality, makes the task of understanding sys-

tems holistically more complicated. While binary

instrumentation frameworks such as Pin, Valgrind,

and Atom allow the rapid development of tools for

instrumenting software, it is more complex to

build similar frameworks with functionality split

between the worlds of software and application-

specific hardware. Our instrumentation frame-

work provides an interface that simplifies walking,

augmenting, and modifying reconfigurable hard-

ware designs. For example, one might wish to

count the number of times a hardware event is

triggered, access the frequency of particular mem-

ory address, or perform complete hardware-level

information flow tracking. In any of these cases,

PyRTL’s instrumentation framework allows

development of the tools in a few hundred LOC,

yet the performance of the resulting tools allows

for the instrumentation of designs of a fewmillions

of gates in only a few seconds.

Gate-Level Information Flow Tracking

Before we describe our framework for instru-

mentation and transforms, we present a sample

tool for gate-level information flow tracking

(GLIFT).11 Information flow analysis is pivotal to

evaluate security properties of programs and pro-

cesses. We can guarantee data integrity by verify-

ing that particular values were never affected by

outside signals, and ensure isolation by verifying

that values never leak to the outsideworld. This is

often accomplished by tracking the “taintedness”

of values to check for the existence of undesired

flows (untrusted to trusted, secure to insecure,

etc.). However, information leakage of processor

state may not be detectable at the ISA level. GLIFT

extends information flow analyses to hardware

and demonstrates how additional logic can be

added to an existing design to track the informa-

tion flow at the level of individual logic gates.

Such analysis at design time can be extremely

valuable for implementing secure processors, and

other hardware securitymodules.

Using PyRTL’s instrumentation framework,

GLIFT analysis can be implemented such that, for

each logic element additional “shadow” hardware

is added to track its “taintedness” and compute

whether the result of thewire shouldbe considered

tainted as well. Adding the additional GLIFT logic

has little performance impact so long as it fits in the

available LUTs. By building GLIFT as an instrument,

we present the designer with freedom to decide

how to access data, what data to access, whether

custom inputs and outputs in the hardware cir-

cuitry are considered, whether special instructions

are considered, etc. The resulting GLIFT implemen-

tation takes up only 72 LOC (Figure 5 shows an

excerpt of the transform that instruments a circuit

with full GLIFT monitoring). Even though LOC is an

imperfect metric of the programmer effort needed

to design such hardware, it still demonstrates that

these instruments can be built with ease.

Instrumentation API

Rawmanipulations of the internal representa-

tion are tedious and error-prone. Therefore,

Figure 5. Implementation of GLIFT in PyRTL’s instrumentation

framework.

Agile and Open-Source Hardware

82 IEEE Micro

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 26,2021 at 02:40:27 UTC from IEEE Xplore. Restrictions apply.

PyRTL’s instrumentation API is the cornerstone

to making the instrumentation platform accessi-

ble. These API calls collect commonly needed

information and perform common modifications

to the hardware block.

Data-Flow Respecting Iterator for

Topological Sorting It is sometimes useful to

have a well-defined data-flow preserving iteration

order for circuit elements. Without

such an ordering, much additional

verification would be required.

PyRTL’s instrumentation frame-

work provides a data flow respect-

ing iterator that guarantees a logic

operation is only returned after its

predecessors (with the exception of

registers). This, in turn, guarantees

any modifications to predecessors

is completed and therefore can be

used, prior to modification of any

logic operation.

Net Connections While Logi-
cNets, which represent operations,

store which wires are connected to

them, the wires do not store which nets they are

connected to. In order to improve performance

and eliminate this confusion, we built the func-

tion net_connections. It returns a dictionary

that, for each wire, notes which net is its source

and which nets use the wire. With this informa-

tion and the information contained in the nets

themselves, an instrument is able to efficiently

traverse and transform the circuit.

Wire and Logic Replacement Replacing

logic and wire elements from the hardware block

can vary depending on the application. Adding

new logic and wires to a design is trivial, but

modifying existing logic is more nuanced, e.g.,

finding all places where a wire is used and mak-

ing sure not to iterate over new hardware when

transforming existing hardware, etc. We provide

two API functions — wire_transform and net_-
transform— to facilitate replacement. The input

to both functions is a mapping of a single wire/

net to new wires/nets.

CONCLUSION
While domain-specific accelerators and

reconfigurable computing continue to grow in

importance, traditional hardware design meth-

odologies will struggle to accommodate the

broader participation and rapid development

cycles necessary to unlock the true potential of

these new architectures. While there is a grow-

ing community of tools and techniques develop-

ing in this space, we offer PyRTL

as solution to improve productiv-

ity of hardware designers by pro-

viding high-level abstractions,

increased opportunity for design

reuse, tight integration with exist-

ing software libraries, and an

instrumentation infrastructure

for analysis. Our hope is to work

in concert with other wonderful

agile hardware tool and language

developers to help further open

the domain of hardware design

to students, software engineers,

and enthusiasts and to empower

them with tools to build good

hardware quickly.

& REFERENCES

1. J. Clow, G. Tzimpragos, D. Dangwal, S. Guo,

J. McMahan, and T. Sherwood, “A pythonic approach

for rapid hardware prototyping and instrumentation,”

in Proc. IEEE 27th Int. Conf. Field Program. Logic

Appl., 2017, pp. 1–7.

2. P. Bjesse, K. Claessen, M. Sheeran, and S. Singh,

“Lava: hardware design in haskell,” in Proc.

ACM SIGPLAN Notices, 1998, vol. 34, no. 1,

pp. 174–184.

3. J. Bachrach et al., “Chisel: constructing hardware in a

scala embedded language,” in Proc. IEEE DAC Des.

Autom. Conf., 2012, pp. 1212–1221.

4. J. Decaluwe, “Myhdl: A python-based hardware

description language,” Linux J., no. 127, pp. 84–87,

2004.

5. D. Lockhart, G. Zibrat, and C. Batten, “PyMTL: A

unified framework for vertically integrated

computer architecture research,” in Proc. 47th

Annu. IEEE/ACM Int. Symp. Microarchit., 2014,

pp. 280–292.

While there is a grow-

ing community of tools

and techniques devel-

oping in this space, we

offer PyRTL as solution

to improve productivity

of hardware designers

by providing high-level

abstractions, increased

opportunity for design

reuse, tight integration

with existing software

libraries, and an instru-

mentation infrastruc-

ture for analysis.

July/August 2020 83
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 26,2021 at 02:40:27 UTC from IEEE Xplore. Restrictions apply.

6. S. Jiang, B. Ilbeyi, and C. Batten, “Mamba: Closing the

performance gap in productive hardware

development frameworks,” in Proc. 55th ACM/ESDA/

IEEE Des. Autom. Conf., 2018, pp. 1–6.

7. C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and

M. Gerards, “Chash: Structural descriptions of

synchronous hardware using haskell,” in Proc. IEEE

13th Euromicro Conf. Digit. Syst. Des., Archit.,

Methods Tools, 2010, pp. 714–721.

8. C. Wolf, “Yosys open synthesis suite,” 2016.

9. G. Tzimpragos, A.Madhavan, D. Vasudevan,

D. Strukov, and T. Sherwood, “Boosted race trees for low

energy classification,” inProc. 24th Int. Conf. Archit.

Support Program. Lang.Oper. Syst., 2019, pp. 215–228.

10. D. Aboye et al., “PyRTLMatrix: An object-oriented

hardware design pattern for prototyping ML

accelerators,” in Proc. 2nd Workshop Energy Efficient

Mach. Learn. Cogn. Comput. Embedded Appl., 2019,

pp. 36–40.

11. M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore,

F. T. Chong, and T. Sherwood, “Complete information

flow tracking from the gates up,” in Proc. ACM Sigplan

Notices, 2009, vol. 44, no. 3, pp. 109–120.

Deeksha Dangwal is currently working toward the

Ph.D. degree in computer architecturewith theDepart-

ment of Computer Science, University of California,

Santa Barbara. Her research interests lie at the inter-

section of computer architecture, privacy, and infor-

mation theory. She is a student member of IEEE and

ACM.Contact her at deeksha@cs.ucsb.edu.

Georgios Tzimpragos is currently working

toward the Ph.D. degree with the Department of

Computer Science, University of California, Santa

Barbara, and is a Research Affiliate with Lawrence

Berkeley National Laboratory. His research interests

are broadly in the field of computer architecture.

Tzimpragos received the master’s degree in electri-

cal and computer engineering from the University of

California, Davis. His alma mater is the National

Technical University of Athens in Greece. Contact

him at gtzimpragos@cs.ucsb.edu.

Timothy Sherwood is currently a Professor of

Computer Science and the Associate Vice Chancel-

lor for Research with the University of California,

Santa Barbara. He is a Co-Founder of the hardware

security startup Tortuga Logic and the 2016 ACM

SIGARCH Maurice Wilkes Awardee “for contributions

to novel program analysis advancing architectural

modeling and security.” Sherwood received the B.S.

degree in computer science from the University of

California, Davis, and the M.S. and Ph.D. degrees

from the University of California, San Diego. Contact

him at sherwood@cs.ucsb.edu.

Agile and Open-Source Hardware

84 IEEE Micro

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 26,2021 at 02:40:27 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

